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SUMMARY
Cancer cells enter a reversible drug-tolerant persister (DTP) state to evade death from chemotherapy and tar-
geted agents. It is increasingly appreciated that DTPs are important drivers of therapy failure and tumor
relapse. We combined cellular barcoding and mathematical modeling in patient-derived colorectal cancer
models to identify and characterize DTPs in response to chemotherapy. Barcode analysis revealed no loss
of clonal complexity of tumors that entered the DTP state and recurred following treatment cessation. Our
data fit a mathematical model where all cancer cells, and not a small subpopulation, possess an equipotent
capacity to become DTPs. Mechanistically, we determined that DTPs display remarkable transcriptional and
functional similarities to diapause, a reversible state of suspended embryonic development triggered by un-
favorable environmental conditions. Our study provides insight into how cancer cells use a developmentally
conserved mechanism to drive the DTP state, pointing to novel therapeutic opportunities to target DTPs.
INTRODUCTION

There is increasing evidence that non-genetic processes drive

drug tolerance, presenting a major hurdle to successful cancer

therapy (Recasens and Munoz, 2019). Drug-tolerant persister

(DTP) cells are emerging as key players in the field of non-genetic

heterogeneity of tumors and have been identified across a wide

range of tumors in response to chemotherapy and targeted

agents (Guler et al., 2017; Hangauer et al., 2017; Liau et al.,

2017; Sharma et al., 2010). Therefore, DTPs represent a potential
226 Cell 184, 226–242, January 7, 2021 ª 2020 Elsevier Inc.
therapeutic opportunity prior to development of classic irrevers-

ible genetic mutation-driven drug resistance. The DTP state is

characterized by cancer cells that are quiescent or slow-cycling

and typically represent a small subpopulation of the parental tu-

mor (0.3%–5%) (Guler et al., 2017; Liau et al., 2017; Sharma

et al., 2010). The concept of persisters is derived from the micro-

bial literature, where it is well established that treatment of infec-

tions with antibiotics can reduce bacterial burden but, in some

instances, fails to eliminate refractory bacteria (Kaldalu and Ten-

son, 2019; Van den Bergh et al., 2017). Bacterial persisters are
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characterized as phenotypic variants that can transiently tolerate

extraordinary levels of antibiotics but remain genetically drug

sensitive (Balaban et al., 2004, 2013; Brauner et al., 2016; Kint

et al., 2012). In the context of cancer, DTPs represent a reversible

state where, upon removal of treatment, often referred to as a

drug holiday, they resume growth and proliferation but remain

sensitive to chemotherapy (Recasens and Munoz, 2019). Similar

to bacterial persisters, the ability of DTPs to escape the toxic ef-

fects of chemotherapy cannot be explained on the basis of ge-

neticmutations (Recasens andMunoz, 2019). Pioneering studies

by Sharma et al. (2010) identified DTPs in cancer cell lines and

demonstrated that this drug-tolerant subpopulation could be ab-

lated selectively in vitro by treatment with an insulin-like growth

factor 1 receptor (IGF-1R) inhibitor or chromatin-modifying

agents. Other studies have also demonstrated a role for repres-

sion of stress-induced long interspersed repeat element 1 (LINE-

1) expression in driving the DTP state, as well as DTP depen-

dency on the lipid hydroperoxidase GPX4 (Guler et al., 2017;

Hangauer et al., 2017). To date, the majority of DTP studies

have focused on in vitro-generated DTPs from commercial cell

lines, demonstrating that they exist as a small subset of the total

tumor cell population (Egan et al., 2015; Guler et al., 2017). More

recent work in triple-negative breast cancer, using patient-

derived xenografts (PDXs), also revealed that only a subpopula-

tion of cancer cells was capable of repopulating the tumor

following a DTP state (Echeverria et al., 2019). Interestingly, tu-

mor regrowth was not associated with any genomic selection;

therefore, it was suggested that phenotypic properties may

have endowed a subpopulation of cancer cells with the capacity

to preferentially re-populate the tumor. However, much remains

to be understood about the subset of cancer cells that can

generate DTPs and the key mechanisms driving the DTP state

in vivo.

Given that DTPs represent a non-genetic reversible state can-

cer cells enter to survive the harsh environment created by

chemotherapy,we questioned whether tumors are hijacking an

evolutionarily conserved survival strategy. There are limited

numbers of conserved survival strategies organisms employ to

survive hostile environments, and most are conserved across

the animal kingdom, including torpor, estivation, and diapause.

Torpor and estivation are typically activated for an animal to sur-

vive environments of extreme cold and heat, respectively.

Diapause is defined as a reversible state of suspended embry-

onic development triggered by unfavorable environmental con-

ditions, including nutrient deprivation (Deng et al., 2018; Fenelon

and Renfree, 2018). Diapause is a physiological reproductive

strategy utilized across the animal kingdom, including in some

mammals, to survive stressful environments. There is no cellular

selection in diapause; rather, every cell in the embryo reversibly

enters the state, and when the environmental insult resolves, the

embryo resumes normal development. We investigated whether

cancer cells, and more specifically DTPs, enter an embryonic

diapause-like state to survive the stressful environment created

by chemotherapy.

Here we used colorectal cancer (CRC) patient-derived

models, high-complexity lentiviral barcoding, next-generation

sequencing (NGS), and mathematical modeling to identify

drivers of the DTP state. We found that xenograft tumors that
emerged following a chemotherapy-induced DTP state did not

exhibit any significant decrease in genetic or barcode

complexity. Furthermore, mathematical modeling supported

the ‘‘equipotent’’ model, in which all cancer cells in a given tumor

have an equal capacity to enter the DTP state to survive therapy.

Indeed, transcriptional profiling revealed that tumor cells adopt a

state similar to the diapause state in embryos to survive the

stress of chemotherapy and, similar to the embryo, can exit

this state and reestablish the tumor upon stress removal (Deng

et al., 2018; Fenelon and Renfree, 2018).

RESULTS

Response of Patient-Derived CRC Models to In Vivo

Treatment with Standard-of-Care Chemotherapy
To study DTPs in vivo, we established a robust model that gen-

erates DTP-state tumors. First, we determined the effect of treat-

ment with standard-of-care chemotherapy on xenograft tumor

growth using two patient-derived CRC samples in immunodefi-

cient mice (non-obese diabetic [NOD]/severe combined immu-

nodeficiency [SCID]) (Table S1; Figures 1A and S1A). When

tumors reached �100 mm3, mice were treated with standard-

of-care chemotherapy regimens for CRC, using maximum toler-

ated doses (Figures S1B and S1C) (Gustavsson et al., 2015). For

the patient-derived CRC model POP66, tumors from mice

treated with 5-fluorouracil and leucovorin (5-FU/LV), oxaliplatin

(OXA), or FOLFOX (5-FU/LV and OXA) demonstrated a small

but not statistically significant growth delay compared with the

vehicle control (saline; Figures S1D and S1E). Similarly, for

CRCmodel CSC28, there was no significant tumor growth delay

of OXA- and FOLFOX-treated tumors compared with saline,

although 5-FU/LV-treated tumors had a small but significant

growth delay (Figures S1F and S1G). There was no difference

in Ki-67 expression in all treatment groups for POP66; however,

CSC28 demonstrated a significant decrease in Ki-67 expression

in the 5-FU/LV- and FOLFOX-treated groups (Figures S1H and

S1I). No significant differences in TUNEL (terminal deoxynucleo-

tidyl transferase dUTP nick end labeling) positivity or necrosis

were observed across all tumor groups for both models (Figures

S1H and S1J). The response to 5-FU/LV, OXA, or FOLFOX treat-

ment, which ranged from minimal to no delay in tumor growth,

was likely due to dose limitations of the NOD/SCID mice used

in these studies.

In contrast, tumors (POP66 and CSC28) from mice treated

with irinotecan (CPT-11) or FOLFIRI (5-FU/LV and CPT-11) for

8 weeks demonstrated negligible growth compared with the

vehicle controls (saline for 5-FU/LV and 5% DMSO for CPT-11;

Figures 1B–1E). Tumors remained stable for the 8 weeks during

which mice were on treatment. However, for both CRC samples,

tumor regrowth initiated when treatment with CPT-11 or FOLFIRI

was discontinued (between 31–44 days for POP66 and 34–

57 days for CSC28; Figures 1B and 1D). The median time for tu-

mors to reach 400 mm3 was delayed significantly in the CPT-11

and FOLFIRI groups compared with vehicle controls or 5-FU/LV

treatment alone (Figures 1C and 1E). There were no significant

differences in Ki-67 expression, TUNEL positivity, or percent ne-

crosis between vehicle controls, CPT-11, and FOLFIRI regrowth

tumors (Figures 1F and 1G). However, tumors that were
Cell 184, 226–242, January 7, 2021 227
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Figure 1. Response of CRC PDXs to Treatment with Chemotherapy

(A) In vivo treatment schematic for two CRC patient-derived xenograft (PDX) models (POP66 and CSC28).

(B and C) Tumor growth curves (B) and Kaplan-Meier survival curves (C) of POP66 PDXs treated with saline, DMSO, 5-FU/LV, CPT-11, or FOLFIRI.

(D and E) Tumor growth curves (D) and Kaplan-Meier survival curves (E) of CSC28 PDXs treated with saline, DMSO, 5-FU/LV, CPT-11, or FOLFIRI. Numbers in

parentheses indicate biological replicates in that group. A dotted line indicates when treatment was stopped. Each point on the growth curve is the mean tumor

volume ± SEM, two-way ANOVA. The median time to reach a tumor volume of 400 mm3 is listed for the POP66 and CSC28 PDXs; log rank test.

(F and G) Immunohistochemistry (H&E, Ki-67, and TUNEL stain, 203) analysis of tumors for POP66 (F) from (B) and CSC28 (G) from (D) at the endpoint. CPT-11

DTP-state tumors were harvested on day 28 of treatment. Scale bar, 50 mm. Percent Ki-67 positive cells and percent area necrosis are plotted; one-way ANOVA.

(H) Reinjection of CPT-11-treated tumors that regrew (B, CPT-11 regrowth tumors) and re-treatment with DMSO or CPT-11. Numbers in parentheses indicate

biological replicates in that group; t test.

*p < 0.05, **p < 0.01, ***p < 0.001. See also Table S1 and Figures S1 and S2.
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harvested while on treatment with CPT-11 demonstrated signif-

icantly less Ki-67 expression with no significant alterations in

percent necrosis or apoptosis, indicating decreased proliferation

(Figures 1F and 1G). To determine whether CRC cells treated

with CPT-11 or FOLFIRI remained sensitive following treatment

cessation and tumor regrowth, we harvested viable tumor cells

from the regrowth tumors and injected them into new mice,

which were subsequently treated with CPT-11 (Figure 1H). All tu-

mors remained sensitive to CPT-11 upon re-exposure and again

demonstrated no growth while on treatment. Thus, the tumor

response to CPT-11 and FOLFIRI was consistent with the cancer

cells entering a reversible DTP state. In addition, limiting dilution

assays on control (DMSO) versus CPT-11-DTP-state tumors

showed no enrichment of stem cells in the DTP state (data not

shown), establishing that it is not stem cells that preferentially

survive this state.

Long-Term CPT-11 Treatment Gives Rise to Irreversibly
Resistant Tumors
To generate tumors that were irreversibly resistant to CPT-11

treatment, we continued long-term in vivo exposure in a subset

of mice from both CRC samples (Figure S2A). The CPT-11

dose was well tolerated by mice over the entire course of treat-

ment (Figures S2B and S2C). For POP66, continuous long-term

treatment in vivo resulted in three CPT-11-resistant tumors (of 10

total) that grew on treatment (�214 days; Figures S2D and S2E).

Interestingly, despite being on treatment for �15 months

(469 days), resistant tumors never developed for CSC28 (Figures

S2F and S2G). POP66 CPT-11-resistant tumors showed robust

Ki-67 staining, indicating active tumor growth while on treatment

(Figure S2H). Furthermore, POP66 and CSC28 long-term-

treated tumors that did not grow on treatment also showed

strong Ki-67 staining, suggesting that the tumor cells were

cycling (Figure S2H). To determine whether the POP66 CPT-11

resistant tumors remained insensitive to therapy, we harvested

viable tumor cells from the resistant tumors and injected them

into new mice that were then treated with CPT-11 (Figure S2I).

All three resistant tumors regrew while on treatment with CPT-

11, indicating establishment of tumors that were irreversibly

resistant, unlike tumors that went through a DTP state and

regrew when CPT-11 treatment was stopped.

Genetic Heterogeneity IsMaintained fromParent Tumor
to Treated Xenografts
We conducted whole-exome sequencing (WES) to determine

the genetic clonal and sub-clonal structure of our CRC models.

Analysis of the single-nucleotide variant (SNV) allele fractions

(VAFs) in diploid regions of the POP66 parent tumor (P0), first-

generation xenograft (G0), and CPT-11 regrowth xenografts indi-

cated the presence of subclones in the parent tumor and xeno-

grafts (Figures S3A and S3B). Furthermore, by utilizing the

mutant allele tumor heterogeneity (MATH) score to measure

the genetic intra-tumoral heterogeneity (ITH), we determined

that there was no significant change in genetic ITH observed be-

tween POP66 P0, G0, and CPT-11 regrowth xenografts (Fig-

ure S3B). Similarly for CSC28, genetic ITH was maintained

from G0 through to the treated xenografts (saline, DMSO,

CPT-11 regrowth; Figure S3C). MATH scores revealed that the
POP66 CPT-11-resistant xenografts exhibited a significant

decrease in genetic ITH compared with P0, G0, and CPT-11 re-

growth tumors (Figure S3B), suggesting that they underwent ge-

netic selection.

To further assess genetic ITH, we used the extensive muta-

tional information from the POP66 and CSC28 WES data and

subjected it to Pairtree computational analysis (Data S1; Winter-

singer et al., 2020; Dobson et al., 2020). Using SNVs from diploid

regions across all of the POP66 or CSC28 set of tumors (Data

S1), we resolved unique subclones (POP66 = 26, CSC28 = 11)

to construct clone trees describing the evolution of each cancer

as a whole. We resolved a complex tree structure that demon-

strated pervasive genetic ITH, with the proportions of each clone

showing that every tumor sample (P0, G0, treated xenografts) is

composed of multiple genetically distinct subpopulations (Fig-

ures S3D–S3G; Figure 1 in Data S1).

To compare the degree of genetic ITH between individual tu-

mors, we analyzed each tumor independently using Pairtree

(Figure 2 in Data S1; ). For each tumor under different treatment

conditions, we resolved the genetic subclones present, the rela-

tionships between these clones, the proportions of each clone in

the tumor, and degree of genetic ITH indicated by the mutational

Shannon diversity index (MSDI; Figure 2 in Data S1; Figure S3H)

(Wolf et al., 2019). MSDI analysis supported our finding of perva-

sive ITH across POP66 and CSC28 P0, G0, vehicle, and CPT-11

regrowth xenografts and less genetic ITH in POP66 CPT-11-

resistant xenografts (Figure S3H).

Our data establish that CPT-11-treated tumors that go through

the DTP state do not demonstrate loss of genetic heterogeneity,

unlike CPT-11-resistant tumors. Moreover, the absence of a

decrease in genetic heterogeneity in the CPT-11 regrowth tu-

mors, together with their retained sensitivity to CPT-11, is

consistent with a non-genetic mechanism of drug tolerance.

Barcode Complexity Is Maintained in CRC Xenografts
following a CPT-11-Induced DTP State
To probe the clonal dynamics of the DTP state in vivo, we adapt-

ed a barcoding strategy to track individual cells within tumors

(Bhang et al., 2015). Briefly, prior to injection, we infected cells

of the two CRC patient-derived models described above with a

high-complexity lentiviral barcode library (�2.6 million variable

DNA sequences or ‘‘barcodes’’) at a low multiplicity of infection

(MOI % 0.1) to limit the number of multiple viral integrants.

Following selection and in vitro expansion, cells were injected

subcutaneously into the flanks of NOD/SCID mice (Figure 2A).

A decrease in overall barcode complexity was observed

following xenograft generation, where an engraftment efficiency

of 5%–15% was determined based on barcode abundance in

the expanded cell population used for the injections (T0) and

the number of barcoded cells injected (Table S2). Using

spiked-in control barcodes, we confirmed that NGS can robustly

quantify barcodes representing as few as 50 cells. The barcodes

that were present at higher abundance at the time of injection

into mice (T0) were generally not the most abundant barcodes

in xenografts (Figures 2B, 2C, S4A, and S4B), indicating no

bias on the basis of initial barcode abundance.

To elucidate the effect of the DTP state on clonal complexity,

barcode composition was compared between control and
Cell 184, 226–242, January 7, 2021 229
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Figure 2. Barcode Complexity in PDXs Post-chemotherapy

(A) Barcoding and in vivo treatment schematic for the POP66 and CSC28 CRC PDX models from Figures 1 and S1.

(B and C) Clonal composition of tumors grown in mice from barcoded POP66 (B) or CSC28 (C) models from Figures 1 and S1 following control treatment (saline,

DMSO) or chemotherapy. Barcodes are arranged along the y axis according to their starting abundance (T0). Each barcode is assigned a random color for

plotting. Only barcodes enriched to at least 1% in one or more tumors are shown.

(D and E) Shannon diversity index for the clones observed in the top 98% of reads for tumors in each treatment group for POP66 (D) and CSC28 (E). No significant

differences were found in barcode composition by pairwise Wilcoxon rank-sum test with Holm multiple testing correction.

See also Figure S4 and Table S2.
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treatment groups, including treatment regimes that induced a

DTP state (CPT-11, FOLFIRI) and those that did not induce a

DTP state (5-FU/LV, OXA, FOLFOX). We hypothesized that tu-

mors that went through the DTP state would demonstrate a

decrease in barcode complexity and designed the experimental

strategy so that we could determine whether the DTP subpopu-

lation represented a pre-existing or de novo acquired cellular

subset. Unexpectedly, no significant loss in barcode complexity
230 Cell 184, 226–242, January 7, 2021
was observed in CRC cells that went through the DTP state

in vivo (Figures 2B–2E). Notably, the enriched barcodes were

unique across all tumors (Figures 2B and 2C), indicating that

there was no selection of a pre-existing cell subpopulation that

gave rise to DTPs. Treatment with OXA and FOLFOX, which

did not induce a DTP state, did not show any change in barcode

complexity either. There were no significant differences in tumor

weights at the time of sacrifice across all treatment groups,
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indicating no sequencing bias from the tumors (Figures S4C and

S4D). Although there were significant differences in the time

(days) when tumors grew in mice (Figures S4E and S4F), as ex-

pected considering the CPT-11 and FOLFIRI tumors went

through a DTP state, these differences were not associated

with any significant difference in the total number of barcodes

detected (Table S2), barcode complexity (Figures 2B–2E), or

maximum clone size (Figures S4G and S4H). POP66 CPT-11-

resistant tumors were the only tumors to demonstrate a signifi-

cant decrease in clonal complexity (Figures S4I–S4K). Collec-

tively, our findings show no loss of clonal complexity based on

barcode composition of tumor cells that emerged from a DTP

state, indicating that DTPs do not represent a cell subpopulation

in these CRC models.

An Equipotent Model of Clonal Dynamics in Response to
Chemotherapy
The results from the barcoding experiments were unexpected

because, based on the significant decrease in tumor size during

treatment, we expected a decrease in barcode complexity after

tumors regrew following the DTP state. The lack of correlation in

the identity of enriched barcodes among biological replicates of

the experiment suggested that clonal dominance (evidenced by

barcode enrichment) is not primarily driven by pre-existing se-

lective advantages (Shakiba et al., 2019). However, it remained

unclear whether the observed variability in clonal output was

due to some clones developing selective growth advantages.

To address this, we first analyzed clone size distributions and

observed that the barcode distributions remained largely

‘‘invariant’’ across the two control groups as well as the different

chemotherapy treatment groups, including tumors that went

through a DTP state (Goyal et al., 2015; Shakiba et al., 2019).

This invariance is shown visually by the overlapping cumulative

fraction of clones (Figures 3A, 3B, S5A, and S5B). The similarity

in clonal dynamics between the control and treated tumors led

us to hypothesize that the variability in clonal output is not pri-

marily driven by developing fitness differences. This led us to

question whether the observed barcode heterogeneity emerges

from stochastic birth-death cellular dynamics where all cells are

equipotent (i.e., no fitness differences across the population). To

address this, we used more comprehensive mathematical

modeling with clonal resolution.

Our mathematical model for clone size distribution accurately

captured the experimentally observed clonal dynamics. A striking

feature of the experimental clone sizes was the linear relationship

between the cumulative fraction of clones and the relative clone

size on a log-log plot. We found that this log-linear relationship

(Yule, 1925), quantified as the slope on the log-log plot, was

consistently between a tight range of 0.3–0.5 across all 80 tumors

(Figures 3C and 3D). Our model demonstrated that this linear rela-

tionship naturally emerged from a proliferative hierarchy and sub-

exponential (also referred toas logistic or power law) tumor growth

kinetics (Gaimann et al., 2020), which has been widely observed

and analyzed previously across many different tumors (West and

Newton, 2019). In our model, injected cancer cells first exit the

slow-cycling state into a fast-cycling state to form the tumor. The

variability in clonal output in our model was primarily driven by

the stochastic latency in exit from the slow-cycling state, while
the slope depends on the tumor growth kinetics. In particular, if
_N � N1�a, whereN is the size of the tumor and a quantifies the de-

viation from exponential growth (West and Newton, 2019; Fig-

ure 3E; note that a= 0 corresponds to exponential growth), the

clone size distribution is pðnÞ � n�ð1+aÞ, resulting in cumulative

distribution QðnÞ=P
k > npðkÞ � n�a (Figure 3F; see STAR

Methods for model details). Our mathematical model demon-

strates that tumor cells possess an equipotent capacity to form

DTPs. Notably, the equipotency extends to the ability of cancer

cells to enter the DTP state as well as their ability to exit the DTP

state in a stochastic fashion.

DTP-State Cells Express an Embryonic Diapause Gene
Signature
We next performed RNA sequencing (RNA-seq) to gain insight

into the mechanisms that underlie the CPT-11-induced DTP

state (Table S3). The data revealed that DTPs are clearly distinct

from vehicle-treated controls (Figures 4A–4C and S6A), with

1,165 genes upregulated and 928 genes downregulated in the

DTPs (Figure 4B; Table S4). Genes with roles in metabolism,

cell cycle regulation, translation, and RNA processing are highly

enriched among genes downregulated in DTPs (Figures 4D and

S6B; Table S5). Interestingly, cells that exited the DTP state and

led to tumor regrowth are indistinguishable from vehicle-treated

controls (Figures 4A–4C and S6A). DTPs are also transcription-

ally distinct from tumor cells that acquired resistance to CPT-

11 upon continued long-term treatment and eventually gave

rise to tumors while on CPT-11 (Figures S6C–S6E; Table S5).

Thus, DTP cells represent a reversible state induced by drug

treatment but unrelated to classic irreversible drug resistance.

The equipotent capacity of tumor cells to enter the DTP state

for survival prompted us to examine whether the tumor cells

were employing an evolutionary conserved mechanism to sur-

vive the environmental stress associated with chemotherapy

exposure. Furthermore, the concerted downregulation of path-

ways (Myc and mTORc1) and crucial cellular growth processes

(cell cycle, translation, and RNA processing) in DTPs recapitu-

lated embryonic developmental pausing, also known as

diapause (Figures 4D and S6B). It has been shown previously

that mammalian target of rapamycin (mTOR) inhibition induces

a reversible suspended pluripotent state in mouse blastocysts

and embryonic stem cells (ESCs) (Bulut-Karslioglu et al., 2016).

This paused state mimics diapause, a natural phenomenon of

transient developmental arrest upon adverse environmental con-

ditions (Fenelon et al., 2014). Therefore, we compared the tran-

scriptomes of vehicle control, DTP-state, and CPT-11 regrowth

tumors to previously published gene expression data of paused

ESCs and in vivo diapaused embryos (STAR Methods; Table S4)

and found that DTPs share significant similarities with both

models (Figures 4E, 4F, and S6E). We next compared the tran-

scriptomes of vehicle control and DTP-state tumors with previ-

ously published gene expression data of various embryonic

developmental stages, including diapause (Boroviak et al.,

2015). This analysis shows extensive similarities between CPT-

11 DTP-state tumors and diapaused epiblasts but not other em-

bryonic developmental stages (Figure S6F). To further explore

this relationship, we combined expression data from in vitro-

paused ESCs with in vivo embryonic diapause to develop a
Cell 184, 226–242, January 7, 2021 231
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Figure 3. Clonal Composition Remains Invariant across Treatment

(A and B) Mean cumulative clone size distribution for POP66 (A) and CSC28 (B) PDXs across treatments.

(C and D) Estimated power law slope for individual tumors across treatments for POP66 (C) and CSC28 (D) PDXs.

(E) Tumor growth kinetics as a function of interaction parameter (a).

(F) Dependence of cumulative clone size distribution as a function of a.

See also Figure S5.
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gene expression signature characteristic of embryonic pausing

(STARMethods; Table S6; Boroviak et al., 2015; Bulut-Karslioglu

et al., 2016). Compared with vehicle control or CPT-11 regrowth

tumors, DTP-state tumors have the highest embryonic pausing

signature score, indicating that changes in their transcriptome

resemble that of paused ESCs and embryonic diapause (Figures

4G, S6G, and S6H). These similarities were further corroborated

by analyses of expression signatures of specific signaling path-
232 Cell 184, 226–242, January 7, 2021
ways associated with embryonic diapause, where DTPs ex-

pressed significantly reduced levels of mTOR andMyc response

modules (Figures 4D, S6I, and S6J; Bulut-Karslioglu et al., 2016;

Scognamiglio et al., 2016). Conversely, DTPs also express

increased levels of diapause-associated autophagy genes (Fig-

ure S6K; Bulut-Karslioglu et al., 2016; He et al., 2019; Vera-Ram-

irez et al., 2018). Together, these data reveal that CPT-11-

induced DTPs are in a reversible state with extensive
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Figure 4. DTP-State Cells Express an Embryonic Pausing Signature

(A) Principal-component analysis (PCA) plot for all expressed genes across control (CTRL), CPT-11 DTP-state, and CPT-11 regrowth tumor samples.

(B) MA plot showing log2 fold changes in the expression of each gene in CPT-11 DTP-state (left) or CPT-11 regrowth (right) over CTRL samples. Genes

differentially expressed (false discovery rate [FDR] < 0.05, fold-change > 1.5 or < 2/3) are shown in blue. Numbers correspond to upregulated (top) and

downregulated (bottom) genes.

(C) Heatmap of the top 500 variable genes, with CTRL, CPT-11 DTP-state and CPT-11 Regrowth samples grouped by unsupervised hierarchical clustering.

(D) GSEA of Hallmark pathways measured by normalized enrichment score (NES) for all significantly altered pathways (FDR < 0.05) in DTP tumors.

(E) PCA plot for all expressed genes across tumor samples (CTRL, CPT-11 DTP-state, CPT-11 regrowth), ESCs (CTRL ESCs and paused ESCs), and embryos

(embryonic day 4.5 [E4.5] and diapaused embryos).

(F) GSEA of CPT-11 DTP-state tumor samples for genes upregulated (t > 10, top panel) or downregulated (t < �10, bottom panel) in paused ESCs (versus CTRL

ESCs). Genes were pre-ranked by t values for CPT-11 DTP state (versus CTRL). NES and Bonferroni correction adjusted p values are indicated.

(G) Scores of the embryonic pausing signature (n = 124 genes) in CTRL, CPT-11 DTP-state, and CPT-11 regrowth samples. A signature of 124 randomly selected

genes is shown as a control random signature. Data are mean ± SD, Welch two-sample t test. *p < 0.05, ***p < 0.001.

See also Figure S6 and Tables S3, S4, S5, and S6.
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Figure 5. CPT-11-Induced DTP State CRC Xenografts and Cultures Are Slow Cycling

(A) Tumor growth curves of CRCPDXs upon treatment with DMSOor CPT-11. Each point representsmean tumor volume ±SEM. Numbers in parentheses denote

the biological replicates in that group.

(B) H&E and BrdU immunohistochemistry staining with quantification of POP92, POP133, and HT29 tumors (from A) and POP66 and CSC28 tumors (from

Figure 1) treated with DMSO or CPT-11 for 28 days (203). Images are representative of 4 (POP92, POP133, POP66, and CSC28) or 2 (HT29) biological replicates.

Differences in BrdU incorporation were not statistically significant; unpaired t test with Welch’s correction.

(C) Representative bright-field images for POP66 cultures treated with DMSO or CPT-11 for 10 days (203) in vitro.

(legend continued on next page)
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transcriptional similarities to embryonic diapause, hereafter

referred to as a diapause-like DTP state.

CRC Tumors in the CPT-11-Induced Diapause-like DTP
State Are Slow Cycling
Therapeutic pressure has been shown to drive cancer cells into a

DTP state to survive the insult by entering a low proliferative state

(Hangauer et al., 2017; Hata et al., 2016; Risom et al., 2018;

Sharma et al., 2010). Similarly, a defining characteristic of

diapause is that cells enter a slow-cycling state (Bulut-Karslioglu

et al., 2016; Hand et al., 2016; Kostál et al., 2009; Scognamiglio

et al., 2016; �Slusarczyk et al., 2019). Although we observed low

Ki-67 expression for tumors in the diapause-like DTP state (Fig-

ures 1F and 1G), we performed in vivo bromodeoxyuridine (BrdU)

labeling to determine the percentage of cancer cells that were

cycling while in the DTP state. We first established three addi-

tional CRC PDXmodels of the in vivoCPT-11-induced DTP state

(Figures 5A, S7A, and S7B; Table S1). A subset of mice were

administered BrdU during weeks 3 and 4 of CPT-11 treatment,

and tumors were harvested at the end of treatment (4 weeks).

BrdU incorporation analysis revealed that almost all tumor cells

were positive, with no significant difference in percentage of

BrdU positivity between DMSO- and CPT-11-treated tumors

(Figure 5B), establishing that the vast majority of cells in the

DTP state in vivo are cycling, albeit slowly.

In Vitro Characterization of CRC cells in the CPT-11-
Induced Diapause-Like DTP State
We next explored the biology of the DTP state in vitro using CRC

models treated with CPT-11 at 1 mM, a concentration found to

cause 50% growth inhibition (GI50). POP66, POP92, and

CSC28 cultures treated with CPT-11 demonstrated significant

growth suppression but resumed growth upon drug withdrawal

on day 14 (Figures 5C and 5D), indicating that CRC cultures

also enter a reversible DTP state upon CPT-11 treatment

in vitro. Consistent with previous reports of the effect of CPT-

11 on tumor cells (Kaku et al., 2015; Wang et al., 2018), we found

that CPT-11 induced a stall in S and G2/M phases of the cell cy-

cle and a decrease in the G1 fraction (Figure 5E). However,

although cell cycle progression was slightly altered, gene set

enrichment analysis (GSEA) Hallmarks analysis shows that the

transcriptomes of tumors in the diapause-like DTP state, dia-

paused embryos, and paused ESCs are very distinct from the

published transcriptomic profiles of various cell cycle arrest

models (Figure S7C). In addition, western blot analysis showed

no induction of cyclin-dependent kinase inhibitors in POP66

and POP92 DTP-state cells (Figure S7D). We observed a small

but statistically significant increase in apoptosis for POP66 and
(D) Cell growth curves of POP66, POP92, and CSC28 CRC cultures treated with D

treatment, and a dashed line indicates cell growth when treatment was stopp

way ANOVA.

(E) Cell cycle analysis of CRC cultures treated with DMSO or CPT-11 for 14 day

Representative flow plots are shown.

(F) Apoptosis/necrosis analysis (Annexin V/PI label) on CRC cultures treated wi

experiments; t test.

(G) Cytofluorimetric analysis of percent Vybrant DiD-labeled positive cultures trea

mean ± SEM; n = 3 independent experiments; t test.

*p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant. See also Figure S7.
CSC28 in response to CPT-11 treatment but not for POP92 (Fig-

ure 5F). Label retention experiments (Quayle et al., 2018) re-

vealed dilution of the Vybrant DiD dye at a much slower rate in

CPT-11-treated cultures compared with the control (Figures

5G and S7E). Additionally, CPT-11-treated cultures exhibited a

significant decrease in total RNA abundance (Figure S7F),

consistent with the global suppression of transcription seen in

embryonic diapause (Bulut-Karslioglu et al., 2016). These data

suggest that, similar to our in vivo BrdU results as well as dia-

paused blastocysts (Bulut-Karslioglu et al., 2016), in vitro CPT-

11-treated cultures in the DTP state are slow cycling and enter

a diapause-like state to survive chemotherapeutic stress.

The CPT-11-Induced Diapause-like DTP State Is
Maintained via the Autophagy Pathway
Guided by our RNA-seq analysis of tumors in the diapause-like

DTP state, we sought to identify specific pathways that drive

DTP formation. Diapaused blastocysts are known to downregu-

late cellular transcription and translation programs via key path-

ways such as mTOR (Bulut-Karslioglu et al., 2016; Scognamiglio

et al., 2016). In line with RNA-seq analysis of tumors in the

diapause-like DTP state that revealed significant downregulation

of the mTOR pathway (Figure S6I), western blot analysis of DTP-

state cultures also showed a decrease in mTOR signaling (Fig-

ure 6A). Because previous reports have shown that the Ras/

mitogen-activated protein kinase (MAPK) pathway is activated

upon mTOR inhibition (Carracedo et al., 2008; Zhang et al.,

2017), we also observed extracellular signal-regulated kinase 1/

2 (ERK 1/2) activation in DTP-state cultures by western blot anal-

ysis (Figure 6A). Furthermore, similar to CPT-11-treated cells,

POP92 and CSC28 cultures treated with themTORC1/2 inhibitor

INK 128 (GI50, 25 nM) showed significant growth suppression but

no increase in apoptosis compared with DMSO-treated controls

(Figures 6B and 6C; Hsieh et al., 2012). The cultures resumed

growth upon withdrawal of the mTOR inhibitor on day 14 (Fig-

ure 6B). These data indicate that, similar to CPT-11 treatment,

CRC cells enter a reversible DTP state upon mTOR inhibition.

This finding supports the functional similarities between mTOR

inhibition-dependent diapaused blastocysts and paused ESCs

and the CRC diapause-like DTP state we identified (Bulut-Kar-

slioglu et al., 2016).

mTOR is known to phosphorylate and inactivate autophagy

regulators (Chan, 2009). In the context of diapaused blastocysts,

mTOR downregulation results in upregulation of key autophagy

genes, including ULK1/ATG1 (Bulut-Karslioglu et al., 2016).

Furthermore, induction of autophagy plays a key functional role

in mediating diapause because blastocysts treated with an auto-

phagy inhibitor (the ULK1 inhibitor SBI-0206965) exit the
MSO (black) or CPT-11 (1 mM; red) in vitro. A solid line indicates cell growth on

ed on day 14. Data are mean ± SD, n = 4 independent experiments, two-

s. Data are mean ± SEM, n = 3 independent experiments, two-way ANOVA.

th DMSO or CPT-11 for 5 days. Data are mean ± SD; at least 3 independent

ted with DMSO or CPT-11 in vitro. Treatment was stopped on day 14. Data are
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Figure 6. The CPT-11-Induced Diapause-like DTP State Is Maintained by Upregulation of Autophagy

(A) Western blot analysis of the mTOR pathway in POP66 and POP92 cultures treated with DMSO or CPT-11 (1 mM) for 14 days in vitro (representative of at least 3

independent experiments).

(B) Cell growth curves of CRC cultures treated with DMSO (black) or themTOR inhibitor INK 128 (25 nM, blue). Solid lines indicate ongoing treatment, and dashed

lines indicate cell growth after treatment was stopped on day 14 day. Data are mean ± SD; n = 3 independent experiments; two-way ANOVA.

(C) Apoptosis/necrosis analysis (Annexin V/PI label) on CRC cultures treated with DMSO or INK 128 for 5 days. Data are mean ± SD; n = 3 independent ex-

periments; one-way ANOVA.

(D) Western blot analysis of autophagy pathway proteins in CRC cultures treated with DMSO or CPT-11 for 14 days in vitro (representative of at least 3 inde-

pendent experiments).

(E) qRT-PCR analysis of autophagy pathway genes in CRC cultures treated with CPT-11 for 7 days in vitro. Values are relative to DMSO, normalized to RPLP0,

mean ± SEM; n = 3 independent experiments; t test.

(legend continued on next page)
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diapaused state (Bulut-Karslioglu et al., 2016; Lee et al., 2011).

Consistent with these published findings, RNA-seq analysis of

tumors in the diapause-like DTP state demonstrated upregula-

tion of key autophagy genes (Figure S6K). These results were

further confirmed in vitro, where diapause-like DTP cultures

showed a decrease in inhibitory phosphorylated ULK1 and an in-

crease in ATG13 and LC3 protein expression (Figure 6D) in addi-

tion to increased gene expression of multiple autophagy

pathway mediators (Figure 6E).

We identified ULK1 as a targetable protein in the pathway

and treated cells with SBI-0206965 (SBI; GI50, 2.5 mM) (Egan

et al., 2015). Although all CRC cultures exhibited significant

growth delay in response to SBI treatment alone, the cells

resumed proliferation when SBI treatment was discontinued

(Figure 6F). Cultures treated with CPT-11 responded as

described above, with induction of the diapause-like DTP state

followed by recovery when CPT-11 treatment was discontin-

ued. In contrast, cells treated with CPT-11 and SBI combination

therapy resulted in significant growth suppression with negli-

gible recovery when treatment was stopped. Combination

treatment resulted in significant induction of apoptosis

compared with DMSO, CPT-11, or SBI treatment alone (Fig-

ure 6G). Furthermore, combination treatment of cells with

CPT-11 and chloroquine (CQ; 20 mM), a general autophagy in-

hibitor, resulted in robust induction of apoptosis compared with

either treatment alone (Figure S7G). These data show that,

similar to diapaused blastocysts, the diapause-like DTP state

in our CRC models is dependent on upregulation of the auto-

phagy program and that targeting this pathway with an ULK1

inhibitor prevents its manifestation.

Clinical Relevance of the Embryonic Pausing Signature
We sought to investigate whether the embryonic pausing signa-

ture that defines our tumors in the diapause-like DTP state can

also define what is noted in literature as minimal residual disease

(MRD) in cancer. Interestingly, MRD transcriptomes derived from

animal models and individuals across a range of tumor types

(acute lymphoblastic leukemia, prostate cancer, and melanoma)

significantly correlated with the embryonic pausing signature,

similar to tumors in the diapause-like DTP state (Figure 7A;

Ebinger et al., 2016; Rambow et al., 2018; Sowalsky et al.,

2018). This suggests that our embryonic pausing signature can

identify MRD.

Given the potential role of DTPs in mediating therapeutic

outcome and tumor relapse, we investigated whether our

signature, which defined tumors in the diapause-like DTP state,

could provide prognostic stratification in the TCGA (The Cancer

Genome Atlas) cohort of individuals with CRC (Cancer Genome

Atlas, 2012). The samples from individuals with CRC were

divided into two groups, defined as having a ‘‘high’’ or ‘‘low’’

embryonic pausing signature. Kaplan-Meier analysis showed
(F) Cell growth curves of CRC cultures treated in vitro with DMSO (black), CPT-1

Solid lines indicate cell growth on treatment, and dashed lines indicate cell grow

dependent experiments; two-way ANOVA.

(G) Apoptosis/necrosis analysis (Annexin V/PI label) performed on CRC cultures t

SD; n = 3 independent experiments; one-way ANOVA.

*p < 0.05, **p < 0.01, ***p < 0.001, ns = not significant.
that individuals with a high signature score had significantly

worse overall survival than individuals with a low signature

score (Figure 7B). Furthermore, we analyzed this CRC TCGA

dataset for the autophagy signature (Gene Ontology [GO]:

0010506). Kaplan-Meier analysis showed that individuals with

CRC who had a high autophagy score had significantly worse

overall survival than those with a low autophagy score (Fig-

ure 7C). We extended our analysis to various cancers of the

TCGA and found that, for the indicated cancer cohorts, a

high autophagy signature corresponds to poor overall survival

(p < 0.05; hazard ratio [HR]; Figure 7D). These data suggest

that patients with a high diapause or autophagy score have tu-

mor cells that would be refractory to therapy. We propose that

this signature provides a way to identify individuals with refrac-

tory disease and uncovers innovative therapeutic intervention

strategies to target the diapause-like DTP state responsible

for relapse.

DISCUSSION

In this study, we leveraged cellular barcoding in two CRC PDX

models to show that there is no loss of genetic or barcode hetero-

geneity in cancer cells that go through a chemotherapy-induced

DTP state. Instead, our results demonstrate that cancer cells are

equipotent in their capacity to enter the DTP state, which they

accomplish by activating the evolutionarily conserved survival

strategy of diapause. Similar to diapause, the diapause-like DTP

state is characterized by a decrease in mTOR pathway activity

and an increase in autophagy (Bulut-Karslioglu et al., 2016). Com-

bination treatment of chemotherapy and autophagy inhibitors

induced DTP cell death, providing insight into therapeutic oppor-

tunities to target cancer cells in the diapause-like DTP state.

Some studies indicate that DTPs pre-exist in the original can-

cer cell population and that chemotherapy exposure promotes

selection of this subpopulation or that chemotherapy induces a

phenotypic transition to a DTP state in a subpopulation of tumor

cells (Guler et al., 2017; Liau et al., 2017; Sharma et al., 2010;

Roesch et al., 2010). Our experiments were designed so that

there would be multiple tumors with comparable starting bar-

code populations, allowing us to distinguish pre-existing from

DTP clones acquired de novo. If a pre-existing cancer cell sub-

population was the major source of DTPs, then we would expect

to see selective enrichment of the same barcodes in replicate tu-

mors. However, if DTPs were driven by a stochastic process,

then we would expect distinct barcoded populations to emerge

in independent tumor replicates (Bhang et al., 2015; Merino

et al., 2019; Seth et al., 2019). In our models, the same barcodes

were not detected across replicate tumors, indicating that DTPs

were not a pre-existing subset.

We anticipated that the bottleneck associated with DTP for-

mation in our models would be reflected in loss of barcode
1 (red), SBI-0206965 (SBI; 2.5 mM, blue) or a combination (CPT-11+SBI, gold).

th when treatment was stopped on day 14. Data are mean ± SEM; n = 3 in-

reated with DMSO, CPT-11, SBI or a combination for 5 days. Data are mean ±
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Figure 7. The Embryonic Pausing Signature and Autophagy Signature Applied to Various Cancer Models

(A) Scores of the embryonic pausing signature in previously reported studies related to minimal residual disease (MRD; GEO: GSE83142, GSE102124, and

GSE116237); Welch two-sample t test, **p < 0.01, ***p < 0.001.

(B and C) Overall Kaplan-Meier plot for TCGA data for individuals with CRC, stratified to high and low groups based on (B) the embryonic pausing signature (p =

0.02, log rank test) or (C) GO autophagy signature (GO: 0010506; p = 6 3 10�4, log rank test).

(D) Forest plot showing the overall survival hazard ratio (HR) for the indicated cancers of TCGA based on GO autophagy signature.*p < 0.05, **p <

0.01, ***p < 0.001.
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complexity (Guler et al., 2017; Sharma et al., 2010). Unexpect-

edly, no significant selection was observed based on barcode

complexity in tumors that regrew following theDTP state. It could
238 Cell 184, 226–242, January 7, 2021
be proposed that the observed barcode variability across tumors

is driven by selective dynamics of multiple rapidly mutating

clones (Shakiba et al., 2019). However, WES analysis did not
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reveal any significant generation of mutations in regrowth tu-

mors, negating this possibility. Instead, quantitative analysis of

barcode composition suggested that the observed variability in

barcode complexity is explained by a model that combines pro-

liferative hierarchy with sub-exponential tumor growth kinetics

(Goyal et al., 2015; Lan et al., 2017; West and Newton, 2019).

Here the barcode complexity does not result from genetic diver-

sity based on selective dynamics of cells with fitness differences

but results from stochastic latency in the exit times from a slow-

cycling state (Lan et al., 2017). Thus, our data strongly support

the ‘‘equipotent’’ model, in which all tumor cells have equal ca-

pacity to enter and exit the DTP state to survive therapy, refuting

the idea that a small subpopulation of cells in the parent tumor

are capable of becoming DTPs.

There is increasing interest in approaching therapeutic strate-

gies in cancer by maintaining tumor cells in a DTP state. Howev-

er, our prolonged treatment of a subset of mice with CPT-11 (5–

6 months) suggests that, over time, tumors in the DTP state act

as a reservoir for development of genetically resistant clones.

Tumors that grew out while on prolonged CPT-11 treatment

had decreased genetic diversity, indicating that genetic clonal

selection occurred while the cells remained in the prolonged

DTP state. Our findings are consistent with those of Ramirez

et al. (2016), who demonstrated that persister-derived erloti-

nib-resistant colonies acquired diverse resistance mechanisms

over time, suggesting that the DTP state provides a latent reser-

voir of cells for emergence of drug-resistant clones. In light of this

and our findings, tumor cells should not be held in a persister

state. Instead, therapeutic strategies should be developed to

eliminate persisters or prevent their formation.

Transcriptional profiling of tumors in the DTP state showed

gene expression patterns that closely resembled hormonally

and chemically induced diapause. Although the molecular

mechanisms governing mouse embryonic diapause remain

largely unknown, two recent studies identified downregulation

of the Myc and mTOR pathways as a key player in embryonic

diapause (Bulut-Karslioglu et al., 2016; Scognamiglio et al.,

2016). Inhibition of Myc in mouse ESCs in vitro resembled

diapause in blastocysts in vivo, and inhibition of Myc for 18 h in

blastocysts was compatible with development to term (Scogna-

miglio et al., 2016). Inhibition of mTOR induced reversible

pausing of mouse blastocyst development and allowed their

prolonged culture ex vivo up to 22 days while retaining the ability

to develop to term (Bulut-Karslioglu et al., 2016). Interestingly,

following Myc depletion, murine blastocysts entered a dormant

state, exiting the cell cycle (Scognamiglio et al., 2016). In

contrast, the diapause state induced ex vivo by mTOR inhibition

was not associated with dormancy but a slow-cycling state (Bu-

lut-Karslioglu et al., 2016). Similar to the mTOR inhibitor-induced

diapause state, CPT-11-induced DTPs in our study were not ar-

rested and remained engaged in a slow-cycling state for a pro-

longed time period. Furthermore, naturally diapaused blasto-

cysts in vivo and paused blastocysts ex vivo displayed

pronounced reductions in mTOR activity, alterations in chro-

matin modifications, hypotranscription, and activation of the

key autophagy regulator ULK1 (Bulut-Karslioglu et al., 2016).

Autophagy was shown to play an important functional role

because paused blastocysts co-treated with autophagy inhibi-
tors (the ULK1 inhibitor SBI or CQ) resulted in decreased survival

of the paused state. Here, downregulation of the Myc andmTOR

modules as well as upregulation of key autophagy genes were

observed when tumors were in the diapause-like DTP state.

Furthermore, co-treatment with autophagy inhibitors and CPT-

11 significantly inhibited acquisition of a DTP state and resulted

in robust cell death. Thus, DTPs not only transcriptionally reca-

pitulate diapause but also functionally depend on pathways

that drive embryonic viability during diapause.

The understanding of DTPs is at a relatively nascent stage, and

whether DTPs differ depending on specific chemotherapies or

targeted agents is currently not established. Some of the key

driver genes and pathways identified in DTP models to date

include GPX4, LINE-1 repression, IGF-1R, and oxidative phos-

phorylation (Echeverria et al., 2019; Guler et al., 2017; Hangauer

et al., 2017; Sharma et al., 2010). However, we identified that

DTPs activate a developmentally conserved program to survive

the harsh environment created by chemotherapy, and under-

standing this mechanism will be key to devising methods to

target this state. Future studies of the diapause-like DTP state

in the context of cancer should include developing robust PDX

preclinical DTP models in response to standard-of-care chemo-

therapy and targeted agents as well as syngeneic models that

expand our understanding of how the diapause-like DTP state

is influenced by the immune system. Targeting the diapause-

like DTP state will be essential for developing therapeutic strate-

gies designed to eliminate cancer cells when they are potentially

in their most vulnerable state.
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ExTaq Takara Cat # RR001A
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SYTOX Blue nucleic acid stain Invitrogen Cat # S11348

Vybrant DiD Molecular Probes Cat # MP22887

Odyssey Blocking Buffer LI-COR Cat # 927-40003
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Critical Commercial Assays
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QIAamp Blood Midi Kit QIAGEN Cat # 51185

DNeasy Blood and Tissue Kit QIAGEN Cat # 69506

PicoPure RNA Isolation Kit Applied Biosystems Cat # KIT0214

RNeasy kit QIAGEN Cat # 74106

Takara SMARTer Stranded Total RNA-Seq

Kit v1 - Pico Input Mammalian library kit

Takara Cat # 635007

Annexin V-FITC apoptosis detection kit Thermo Fisher Cat # 88-8005-72

Deposited Data

Raw RNaseq data This paper GEO: GSE145356

Whole Exome Sequencing data This paper EGA: EGAS00001004773

Pairtree inputs This paper https://github.com/morrislab/

crc-dtp-ith-analysis/

Experimental Models: Cell Lines

POP92 O’Brien et al., 2012 N/A

POP66 O’Brien et al., 2012 N/A

CSC28 This paper N/A

POP133 This paper N/A

HT29 ATCC Cat# HTB-38; RRID:CVCL_0320

HEK293T ATCC Cat# CRL-11268; RRID:CVCL_1926

Experimental Models: Organisms/Strains

Mouse: NOD/SCID: NOD.Cg-Prkdcscid/J The Jackson Laboratory JAX:001303; RRID:IMSR_JAX:001303

Oligonucleotides

Illumina sequencing primer:

ACACTCTTTCCCT

ACACGACGC

TCTTCCGATCT

This paper N/A

Barcode Custom primer:

ATCGATACCGTCGA

GATCCGTTCA

CTAATCG

This paper N/A

Barcode Index Primers, see Table S2 This paper N/A

ULK1 Primer pair (see STAR Methods) PrimerBank https://pga.mgh.harvard.edu/

primerbank/

PrimerBank ID:28011640

WIPI1 Primer pair (see STAR Methods) PrimerBank https://pga.mgh.harvard.edu/

primerbank/

PrimerBank ID: 157388938c3

WIPI2 Primer pair (see STAR Methods) PrimerBank https://pga.mgh.harvard.edu/

primerbank/

PrimerBank ID: 75677338c1

WDR45 Primer pair (see STAR Methods) PrimerBank https://pga.mgh.harvard.edu/

primerbank/

PrimerBank ID: 71483644c3

OPTN Primer pair (see STAR Methods) PrimerBank https://pga.mgh.harvard.edu/

primerbank/

PrimerBank ID: 56549110c1

ATG2A Primer pair (see STAR Methods) PrimerBank https://pga.mgh.harvard.edu/

primerbank/

PrimerBank ID: 239047270c2

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ATG13 Primer pair (see STAR Methods) PrimerBank https://pga.mgh.harvard.edu/

primerbank/

PrimerBank ID: 326806953c3

ATG16L2 Primer pair (see STAR Methods) PrimerBank https://pga.mgh.harvard.edu/

primerbank/

PrimerBank ID: 55743107c1

RPLP0 Primer pair (see STAR Methods) Roulois et al., 2015 N/A

Recombinant DNA

pLJM1-(barcode library) This paper N/A

Software and Algorithms

Pairtree (version bd5bfc9) Wintersinger et al., 2020 https://github.com/morrislab/pairtree

Gencode v25 The GENCODE Project https://www.gencodegenes.org/human/

release_25.html

GRCh38.p7 Genome Reference Consortium https://www.ncbi.nlm.nih.gov/assembly/

GCF_000001405.33/

HTSeq v.0.6.1 Open source https://pypi.org/project/HTSeq/

limma v.3.38.3 Open source https://bioconductor.org/packages/

release/bioc/html/limma.html

Picard tools v.1.98 Open source https://broadinstitute.github.io/picard/

R (v.3.5.0) Open source https://www.R-project.org

edgeR (v.3.24.0) McCarthy et al., 2012; Robinson et al., 2010 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

STAR v.2.4.2a Dobin et al., 2013 https://github.com/alexdobin/STAR

XenofilteR v.0.99.0 Kluin et al., 2018 https://rdrr.io/github/PeeperLab/

XenofilteR/man/XenoFilteR.html

MultiQC (v1.6) Ewels et al., 2016 https://multiqc.info/

David (v.6.7) Huang et al., 2009b https://david.ncifcrf.gov/

fGSEA (v.1.8.0) Korotkevich et al., 2019 https://github.com/ctlab/fgsea

Burrows-Wheeler aligner (BWA-MEM) Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

MuTect2 (v3.6) Benjamin et al., 2019 https://github.com/broadinstitute/gatk/

releases

Varscan2 (v2.4.2) Koboldt et al., 2012 https://sourceforge.net/projects/

varscan/files/

Sequenza (v2.1.2) Favero et al., 2015 https://cran.r-project.org/web/packages/

sequenza/index.html

vcf2maf Cerami et al., 2012 https://github.com/mskcc/vcf2maf

Maftools (v2.0.10) Mayakonda et al., 2018 https://www.bioconductor.org/packages/

release/bioc/html/maftools.html

Gillespie Algorithm This paper https://github.com/smcgibbo/

Gillispie-Simulations

Python Python 3 https://www.python.org/

FlowJo FlowJo 10.0 https://www.flowjo.com/

GraphPad Prism GraphPad 6.0 https://www.graphpad.com/

scientific-software/prism/

Other

The Cancer Genome Atlas (TCGA) Cancer Genome Atlas, 2012 https://gdac.broadinstitute.org/

The Molecular Signatures Database

(MSigDB)

Liberzon et al., 2015 https://www.gsea-msigdb.org/gsea/

msigdb/collections.jsp

Acute Lymphocytic Leukemia MRD dataset Ebinger et al., 2016 GEO: GSE83142

Prostate cancer MRD dataset Sowalsky et al., 2018 GEO: GSE102124

Melanoma MRD dataset Rambow et al., 2018 GEO: GSE116237
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Catherine

O’Brien (cobrien@uhnresearch.ca).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The accession number for the RNA sequencing data reported in this paper is GEO:GSE145356. The accession number for theWhole

Exome Sequencing data reported in this paper is EGA:EGAS00001004773. Code implementing the Pairtree algorithm used for these

analyses is available at https://github.com/morrislab/pairtree. The Pairtree inputs used to build clone trees are available at https://

github.com/morrislab/crc-dtp-ith-analysis/. The Gillespie Algorithm used for mathematical simulations performed in this study is

available at https://github.com/smcgibbo/Gillispie-Simulations.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
NOD/SCIDmice were used in this study and were bred in our Animal Facility, originally purchased from The Jackson laboratory. Prior

to all experiments, mice were allowed one week to acclimate to housing conditions in the UHN Animal Resources Centre animal fa-

cility. For maintenance of patient-derived xenografts models, cells from frozen xenograft samples weremixed (1:1) with high concen-

tration Matrigel (Corning, Cat # 354262) and injected subcutaneously into the flanks of NOD/SCID mice (male, 6-8 weeks old). For all

experiments, 5-6 weeks old female mice were used. All mice were housed in specific pathogen-free conditions and all animal exper-

iments were reviewed and approved by the Animal Care Committee at the University Health Network, Toronto, Canada.

Human tissue and patient-derived xenografts
Human CRC tissue was obtained with informed patient consent, as approved by the Research Ethics Board at the University Health

Network in Toronto, and was processed as previously described (Kreso et al., 2014). CRC models used in this study are of female

origin and are listed in Table S1.

Cell lines and Primary Cell Cultures
CRC cultures established directly from patient tissue (CSC28) or from PDXs (POP66 and POP92 (O’Brien et al., 2012), and the

commercially available cell line (HT29; ATCC Cat# HTB-38, RRID:CVCL_0320) were grown as spheroids in suspension culture flasks

at 37�C in a humidified incubator at 5% CO2, as previously described (Kreso et al., 2014). All cell culture models are of female origin.

The culture medium contained DMEM/F-12 (GIBCO) supplemented with 2 mM GlutaMAX (GIBCO), 10 mM HEPES (GIBCO), 1 mM

sodium pyruvate (HyClone), 1X non-essential amino acids (HyClone), 1% penicillin-streptomycin (HyClone), 0.5 mg/ml Fungizone

(GIBCO), 1% N2 Supplement-A (STEMCELL), 0.4% NeuroCult SM1 Neuronal Supplement (STEMCELL), 4 mg/ml, Heparin (Sigma),

0.2% lipids (Sigma), 20 ng/ml EGF (Reprokine), and 10 ng/ml basic FGF (Reprokine). All models were authenticated by STR analysis

and confirmed to be negative for mycoplasma.

METHOD DETAILS

DNA barcode library
Oligonucleotides comprising a 12 base pair degenerate region (the barcode) followed by two stable bases (C or G), and one of several

4 base pair library codes were synthesized with common flanking regions. Nested PCR using the common regions generated double

stranded DNA which was subsequently ligated into a second-generation lentiviral vector (pLJM1) containing a puromycin resistance

cassette and ZsGreen fluorescent marker. Three barcode libraries, each identifiable by a unique library code were cloned, trans-

formed into E. coli and plated as a pool on solid media. At least 5x106 bacterial colonies were scraped and pooled for two of the

high diversity libraries. Plasmid DNAwasmaxi-prepped, and a sample was sequenced to confirm diversity of > 106 unique barcodes.

These libraries are named Library 0 and Library 1. The third library was generated for use as standard spike-in controls. Single col-

onies were selected, prepped and Sanger sequenced to identify several standard barcodes.

Lentivirus production, infection, cell sorting
Lentivirus containing barcode plasmid libraries were produced in HEK293T (ATCC Cat# CRL-11268, RRID:CVCL_1926) cells. Virus

was titered for both POP66 and CSC28 cultures and the desired MOI was calculated as previously described (Hart et al., 2015). CRC

cultures were dissociated and filtered through a 40 mmcell strainer to remove clumps. Cells were diluted to 1.5-23 105 cells per ml in

culture medium containing a pre-determined concentration of polybrene (3-4 mg/ml; Sigma, Cat # TR-1003) and virus was added at a
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multiplicity of infection of % 0.1 to minimize the number of cells with multiple barcodes. After a 24-hour incubation, cells were

washed, then resuspended in fresh culture medium and incubated further. At �60 hours post-infection, cells were dissociated

and barcoded cells (ZsGreen+) were purified by fluorescence-activated cell sorting (FACS) using FACSAria cell sorters (BD Biosci-

ences) and SYTOX Blue nucleic acid stain (Invitrogen) to exclude dead cells. After sorting, an aliquot of the initial barcoded cell pool

was designated as time t = 0 (T0) and snap-frozen for subsequent DNA extraction. The remaining barcoded cells were seeded in a

flask and expanded in culture for 8 doubling times (�256-fold representation) to provide multiple replicates with comparable starting

barcode representations and the complexity to decipher pre-existing from de novo acquired DTP populations. Cells were passaged

as necessary to avoid spheroid overgrowth. Cells were then dissociated, counted and immediately used for downstream applica-

tions or viably frozen.

Chemicals
5-FU was purchased from Sigma (Cat # F6627), LV (Calcium Folinate) from Santa Cruz Biotechnology (Cat # sc252837A), OXA from

Tocris Bioscience (Cat # 2623), CPT-11 from Sigma (Cat # I1406), INK 128 from Selleckchem, (Cat # S2811), SBI-0206965 from Sell-

eckchem (Cat # S7885) and Chloroquine from Sigma (Cat # C6628). For in vitro studies, CPT-11, INK 128 and SBI-0206965 were

dissolved in DMSO, and Chloroquine was dissolved in water. For in vivo studies, 5-FU, LV, and OXA were dissolved directly in saline,

whereas CPT-11 was first dissolved in DMSO (90mg/ml) and then diluted in saline. Dilutions of stock solutions of all drugs weremade

in culture medium immediately prior to use in vitro or administration in vivo.

In vivo chemotherapy drug treatments
Dissociated CRC cells were mixed (1:1) with high concentration Matrigel (Corning, Cat # 354262), and injected subcutaneously

(1x105 for POP66, 2x105 for CSC28, 2.5x105 for POP92, 1x106 for POP133, 2x105 for HT-29) into the hind left and right flanks of fe-

male NOD/SCID mice, 5-6 weeks of age (2 injections per mouse). When the average tumor volume reached �100 mm3, tumor-

bearing mice were randomized into control and treatment groups based on tumor volumes, and dosing commenced on day 0. All

chemotherapies were administered by intraperitoneal injection (8 weeks for POP66 and CSC28; 4 weeks for POP92, POP133 and

HT-29) or until combined tumor burden reached 1.5 cm total diameter. Treatment regimens were as follows: Vehicle-Saline control

(Saline only, three times per week); Vehicle-DMSO control (Saline + 5% DMSO, twice per week); 5-FU (15 mg/kg, three times per

week) and LV (20 mg/kg, three times per week); OXA (1 mg/kg, twice per week); CPT-11 (45 mg/kg, twice per week); FOLFOX

(5-FU + LV + OXA); FOLFIRI (5-FU + LV + CPT-11). When combination therapies were given on the same day, 5-FU and LV were

administered 1 hour before OXA or CPT-11. Body weights were measured every 1-3 days over the course of treatment, and tumor

growth was monitored by caliper measurements every 1-4 days until endpoint was reached and mice were euthanized.

BrdU administration
Mice bearing tumors were first treated with DMSO or CPT-11 for 2 weeks. Then BrdU (5 mg/ml; Sigma, Cat # B5002) dissolved in

phosphate-buffered saline (PBS) was administered by intraperitoneal injection (50 mg/kg) three times a week for 2 additional weeks

while on treatment with DMSO or CPT-11.

Tissue collection and histological analysis
The xenograft tumors harvested after sacrifice were fixed in 10% neutral buffered formalin, dehydrated, and embedded in paraffin,

then serially sectioned (4 mm) thickness, and subjected to histopathological analysis. Tissue sections were stained with hematoxylin

andeosin, TUNELstain (DNAPolymerase 1Large (Klenow) Fragment fromPromega; dATP, dCTP, dGTP fromPromega,Cat #M2201;

Bio-11-dUTP fromCedarlane) (Wijsman et al., 1993), Ki-67 antibody (NovusBiologicals, Cat #NB110-90592, RRID:AB_1217069) and

BrdUantibody (Abcam,Cat# ab6326,RRID:AB_305426) following themanufacturer’s instructions. All slideswere counterstainedwith

hematoxylin and assessed under light microscopy. For IHC analysis – TUNEL expression levels were semi-quantified using immuno-

reactive scores (IRS range 0-12). Score definitions: 0 (score 0-3), 1+ (score 4-6), 2+ (score 7-9), 3+ (score 10-12). For Ki-67 and BrdU

percent positivity, 10 fieldswere randomly chosen, and the average percentage of positive cells determined. All slides were assessed

by a pathologist. Slides were scanned on the Aperio Scanscope AT2 Whole Slide Scanner using a 20x objective.

Digestion of xenograft tumor tissue
Tumors were excised frommice, minced with a razor blade, and incubated in medium (DMEM/F-12, GIBCO) containing collagenase

A (Roche) at 37�C for 60 minutes. After enzymatic digestion, samples were diluted in wash medium and filtered through a 40 mm cell

strainer to remove undigested tissue. Cells were collected by centrifugation at 4503 g for 6minutes, then resuspended in ammonium

chloride solution (STEMCELL, Cat # 07800) and incubated at room temperature for 6 minutes to lyse red blood cells. Cells were

collected by centrifugation at 300 3 g for 5 minutes, then resuspended in Dulbecco’s PBS (DPBS) and counted. Cells were imme-

diately used for downstream applications or viably frozen.

DNA extraction for barcode sequencing
Genomic DNA was extracted from barcoded tumors using the Gentra Puregene Tissue Kit (QIAGEN, Cat # 158689) with modifica-

tions. Briefly, 53 106 viably frozen tumor cells were thawed on ice and collected by centrifuging at 4003 g for 5 minutes. Cell pellets
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and the appropriate barcode standards were resuspended and combined in Cell Lysis Solution, then Puregene Proteinase K was

added (133 mg/ml final concentration) and samples were incubated at 55�C overnight. The next day, RNase A Solution was added

(20 mg/ml final concentration) and samples were incubated at 37�C for 1 hour, after which Protein Precipitation Solution was added,

then samples were vortexed and transferred to a 2 mLMaXtract HD tube (QIAGEN). After 1-2 rounds of extraction with Phenol-Chlo-

roform-Isoamyl Alcohol (25:24:1; Sigma, Cat # P3803), the upper layer was transferred to a new MaXtract tube and centrifuged at

16,000 3 g for 3 minutes. The resulting upper layer was then transferred to a new microcentrifuge tube and DNA was precipitated

with isopropanol followed by a 70% ethanol wash. DNA pellets were resuspended in 100 ml nuclease-free water and incubated at

65�C for 1 hour, followed by incubation at room temperature overnight on a tube rotator. DNAwas quantified using a Nanodrop spec-

trophotometer (Thermo Scientific). Genomic DNA was extracted from barcoded T0 cultures using the QIAamp Blood Midi Kit

(QIAGEN, Cat # 51185) following the manufacturer’s Spin Protocol. Frozen cell pellets containing 3-10 3 106 barcoded cells were

used and the appropriate barcode standards were included. Eluted DNA was precipitated with ethanol in the presence of sodium

chloride followed by a 70% ethanol wash. DNA pellets were resuspended in nuclease-free water and incubated at 50�C for 1

hour. DNA was quantified using a Nanodrop spectrophotometer (Thermo Scientific) and adjusted to a final concentration of

400 ng/ml.

DNA barcode amplification and sequencing
Genomic DNA for all samples is standardized to 400ng/ml in nuclease-free water. Sequencing libraries were constructed by PCR

amplification using a common 30 primer ‘‘BL Seq Amp 30: AATGATACGGCGACCACCGAGATCT and one of 166 unique 50 primers

‘‘BL Seq Amp 50 XXX’’:
CAAGCAGAAGACGGCATACGAGATNNNNNNCGATTAGTGAACGGATCTCGACGGT where the N’s represent a unique sample

index. Barcode index primers are provided in Table S2. Each gDNA sample was amplified in technical triplicate with unique indexes

using ExTaq (Takara, Cat # RR001A) with the PCR program: 95�C for 5minutes, 94�C for 30 s, 65�C for 30 s, 72�C for 30 s and back to

step 2, 32x followed by a 5 minute hold at 72�C. PCR efficiency was assessed by running the product on a 3% agarose gel. The

137 bp barcode library band was quantified using Bio Rad Image Lab software. Equal amounts of each PCR product were pooled

into batches and PAGE purified using 15% TBE PAGE gels (Novex). Purified PCR products were quantified using Qubit, pooled and

run on an Illumina HiSeq2500 using version 4 chemistry and Illumina sequencing primer: ACACTCTTTCCCTACACGACGCTCTTCC

GATCT and custom primer: ATCGATACCGTCGAGATCCGTTCACTAATCG for multiplexed sample ID. Samples were demultiplexed

and barcode abundances analyzed.

Barcode processing and analysis
FASTQ files for each sample were analyzed using a bespoke Perl script. Each read was processed to identify one of the three ex-

pected library codes (CCAA, ACGT, or TGGA) followed by eight bases corresponding to the vector sequence (eg: ATCGATAC), al-

lowing up to one mismatched base for each feature and ignoring quality values. Reads lacking both of these sequences were dis-

carded. The nucleotide sequence corresponding to the barcode was then extracted as the 18 nucleotides preceding the vector

sequence, and all unique barcodes were enumerated. Barcode summary files were then merged into a single matrix. Noise intro-

duced through sequencing or PCR errors was reduced by summing counts for barcodes within a Hamming distance of two into a

single barcode record, where the barcode with the highest average abundance was retained as the ‘‘parent’’ barcode sequence.

Technical replicates were also merged by summing counts across replicates. Each sample was then normalized for sequencing

depth by dividing the read count for each barcode in a given sample by the sum of the total reads. All further analysis and visualization

was performed in R or Python.

Exome sequencing and analysis
Genomic DNA from viable tumor cells was extracted using the DNeasy Blood and Tissue Kit (QIAGEN, Cat # 69506) according to

manufacturer’s instructions. Whole exome sequencing libraries were constructed and enriched from 200 ng of genomic DNA using

the Agilent SureSelect Human All Exon v7 capture kit sequenced on Illumina HiSeq2500. Sequencing reads were aligned to human

genome reference (build hg38) using Burrows-Wheeler aligner (BWA-MEM) (Favero et al., 2015; Koboldt et al., 2012; Li and Durbin,

2009). Matched tumor-normal bam files were used to call somatic single nucleotide variants (SNVs) and small insertions and de-

letions (Indels) with MuTect2 (v3.6) and copy number profiles using Varscan2 (v2.4.2) and Sequenza (v2.1.2) (Benjamin et al., 2019;

Koboldt et al., 2012; Favero et al., 2015). Mutect2 calls were annotated and converted to maf format using vcf2maf (https://github.

com/mskcc/vcf2maf; Cerami et al., 2012). MAF files and copy-number profiles for each sample were then input into the

inferHeterogeneity() function from the maftools (v2.0.10) R package to calculate Mutant-Allele Tumor Heterogeneity (MATH) scores

(Mayakonda et al., 2018). Binomial distributions for each mutation in diploid regions of the genome were calculated using the

dbinom() function in R across the full range of possible variant allele fractions (0 to 1 by 0.001 increments) as a function of depth

of sequencing and alt-allele read counts. In order to test the assumptions of the t test, specifically those of normality and equal

variance we performed the Shapiro-Wilk normality test and Levene’s Test of Equality of Variances, respectively. Shapiro-Wilk p

value = 0.58 (group 1) and p value = 0.98 (group 2) indicating that the distribution of the data is not significantly different from

a normal distribution. Two-sample Levene’s test p value = 0.27 indicated that the variances of these two groups are not signifi-

cantly different.
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Pairtree Intratumoral Heterogeneity Analysis
Pairtree code was written in Python 3. Data analysis pipeline was written in Bash. See Data S1 for details on methodology and

analysis.

Purification of tumor cells from DTP-state xenografts
Viably frozen CRC cells (barcoded POP66, t = 0’ sample described above) were thawed, then expanded in culture for 3 passages.

Cells were then dissociated and injected as described into female NOD/SCIDmice, 6 weeks of age (2 injections at 23 105 cells each;

5 mice for control group, 35 mice for CPT-11 group). When the average tumor volume reached 250 mm3, tumor-bearing mice were

randomized into control and treatment groups based on tumor volumes, and dosing commenced on day 0. Treatment regimens

were: Vehicle-DMSO (Saline + 5% DMSO control) twice per week for 1 week, or CPT-11 (45 mg/kg) twice per week for 6-7 weeks.

Body weights and tumor sizes were measured every 3-4 days until mice were euthanized and tumors were harvested. Tumors were

excised, pooled for the CPT-11 group (R6 tumors per sample), and processed as described above, except that samples were di-

gested for 30-35 minutes, then washed and filtered through a 70 mm cell strainer, and incubated in ammonium chloride solution

on ice for 10 minutes.

Dissociated cells were stained and prepared for FACS as previously described with modifications. Briefly, cells were resuspended

in DPBS/2% FBS to a concentration of 5 3 106 cells/ml. PE-conjugated antibodies for human CD326 (EpCAM; Miltenyi Cat # 130-

098-118; RRID:AB_2660300; 1:25) and APC-conjugated antibodies for mouse H-2Kb (ThermoFisher, Cat # MA5-17998;

RRID:AB_2539382; 1:20) were added, and cells with antibodies were aliquoted 100 ml/tube and incubated on ice for 60 minutes, pro-

tected from light. Cells were then collected by centrifugation at 4003 g for 3 minutes, washed once, then resuspended in DPBS/2%

FBS with SYTOX Blue nucleic acid stain (Invitrogen, Cat # S11348), filtered, and pooled. Live human CRC cells (PE+, APC-, Sytox-)

were purified by FACS using a MoFlo Astrios cell sorter (Beckman Coulter). After sorting, cells were collected by centrifugation at

450 3 g for 15 minutes, then snap-frozen for subsequent RNA extraction.

RNA extraction
RNA was extracted from FACS-purified tumor cells was using PicoPure RNA Isolation Kit (Applied Biosystems, Cat # KIT0214)

following the manufacturer’s instructions. RNA was extracted from spheroid cultures was using RNeasy kit (QIAGEN, Cat #

74106) following the manufacturer’s instructions. RNA was quantified using NanoDrop Spectrophotometer (Thermo Scientific).

For assessment of RNA abundance in cells, cultures were treated with DMSO or CPT-11 (1 mM) for 14 days, trypsinized to single

cells and counted. RNA was extracted from 5x105 cells of each treatment condition and the RNA concentration (per cell) was

determined.

RNA-sequencing and data processing
RNA sequencing libraries were prepared using Takara SMARTer Stranded Total RNA-Seq Kit v1 - Pico Input Mammalian library kit

(Takara, Cat # 635007), loaded in equimolar amounts on an Illumina NextSeq500 sequencer, and sequenced to an average depth

of 40M 75 base-pair paired-end reads per sample. Raw FASTQ files were examined for quality using MultiQC (v1.6; Ewels et al.,

2016) and pre-processed to remove any reads shorter than 36bp using a bespoke Perl script. Due to potential contamination from

mouse stroma, reads were first were mapped to Gencode v25 transcript models and hg38 human genome sequence using the

STAR short-read aligner (v.2.4.2a; Dobin et al., 2013), and separately against mouse transcript models (Gencode vM12,

mm10). Adaptor trimming was included using the following argument for STAR:–clip3pAdapterSeq AGATCGGAAGAGC. Next,

the aligned BAM files generated for each sample were filtered using the R package XenofilteR (v.0.99; Kluin et al., 2018) to flag

and remove reads of mouse origin. Finally, the filtered BAM files were summarized to gene-level read counts using HTSeq

(v.0.6.1) with the following options: -f bam -r pos -s reverse -t gene < BAM file > . All read count files were merged together

into a matrix for further analysis.

RNA-seq bioinformatic analysis
Count data were subsequently imported into R (v.3.5.0) and filtered to remove non-expressed genes. For read-depth normalization,

filtered gene count data were analyzed with the limma using the edgeR package v.3.24.0 in R (see Tables S3 and S4; McCarthy et al.,

2012; Robinson et al., 2010). Thresholds for differential expression were fold-change > 1.5 and FDR < 0.05. Gene ontology analysis

was performed with David 6.7 (https://david-d.ncifcrf.gov/) (Huang et al., 2009a, 2009b). The full list of GO terms (FDR < 0.05) is pro-

vided in Table S5. Other RNA-seq analyses and statistics were performed in R utilizing custom R scripts. Control samples noted in

Figure 4 are DMSO and Saline treated tumors.

RNA-seq data from ESCs (control and paused) (Bulut-Karslioglu et al., 2016) and embryos (control E4.5 and diapause) (Boroviak

et al., 2015) were also filtered to remove non-expressed genes, read-depth normalized and analyzed with limma using the ‘‘edgeR’’

package in R. For direct comparison with tumor expression data, normalized gene expression counts were first transformed into

z-scores separately for each dataset before merging the data. Genes with matching nomenclature were considered as orthologs

(see Table S4). Principal Component Analysis (PCA) was performed with the prcomp function using the z-scores (normalized within

each dataset) and plotted with the function xyplot in R. Hierachical clustering of tumors and embryos was performed with the

‘‘ward.D’’ method of the hclust function in R using the z-scores (normalized within each dataset).
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For gene set enrichment analysis (GSEA), gene signatures were obtained from the MSigDB ‘‘Hallmark gene sets’’ collection (Lib-

erzon et al., 2015). All expressed genes were pre-ranked by t value (DTP state/control, or resistant tumors/control, performed with

edgeR as previously described). GSEA analysis was then performed using the fGSEA package (Korotkevich et al., 2019). The full list

of Hallmark pathways is provided in Table S5. For comparison purposes, a literature search was also performed on NCBI Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) to acquire expression data from models of low proliferation, with

a focus on cell cycle arrest, and the following models were selected: ESCs grown in MEK/GSK inhibitor-containing ‘‘2i’’ media, Nut-

lin3a-treated HCT116 colon cancer cells and neural crest cells, palbociclib (CDK4/6 inhibitor)-treated DLD1 colon cancer cells, spon-

taneous p21-arrested human mammary epithelial cell line MCF10A, and Rb overexpression-arrested ESCs. GEO accession

numbers: GSE81285, GSE113682, GSE128191, GSE74603, GSE122927 and GSE29783 (Bulut-Karslioglu et al., 2016; Lees et al.,

2020; Bowen et al., 2019; Pek et al., 2017; Min and Spencer, 2019; Conklin et al., 2012). For each model of cell cycle arrest, as

well as the embryonic pausing models (paused ESCs and diapaused embryos), differential analysis and GSEA were performed as

previously described for the DTP state. Then, the normalized enrichment scores (NES) for all models were merged. In order to focus

on relevant pathways and avoid issues linked to the non-continuous distribution of the NES, scoreswith FDR > 0.05were ignored and

replaced by missing values (NAs). The data were then plotted as a heatmap, using the ‘‘ward.D’’ method of the hclust function for

clustering purposes, with missing values colored in gray.

For direct comparison of the DTP state and paused ESCs byGSEA, the top differentially expressed genes in paused ESCs (t > 10 or

t <�10, as computedwith edgeR) were selected as gene lists. Then, all expressed geneswere pre-ranked by t value for the DTP state

and GSEA analysis was performed using the fGSEA package (Korotkevich et al., 2019).

To establish a general ‘‘embryonic pausing signature,’’ differential expression was first measured in each embryonic model

independently (i.e., paused ESC/control ESC and diapaused embryos/E4.5 embryos). Genes significantly dysregulated in

both models (upregulated in both or downregulated in both, with FDR < 0.05 for each model, as computed with edgeR) were

selected for the signature (see Table S6). Then, the expression value (z-score) was multiplied by �1 if the gene was downregu-

lated in the embryonic models, while the value of genes upregulated in the embryonic models was kept unchanged, so that a

positive expression value would always reflect a change similar to embryonic pausing. For each sample, the signature score was

then computed as the mean of all genes. The same method was applied to datasets related to MRD, obtained from the NCBI

GEO database (GSE83142, GSE102124 and GSE116237) (Ebinger et al., 2016; Rambow et al., 2018; Sowalsky et al., 2018).

When needed, gene ID conversion was performed using bioDBnet (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php; Mudunuri

et al., 2009).

Gene signatures for the ‘‘mTORC1 response’’ and the ‘‘Myc response’’ were obtained from the MSigDB ‘‘Hallmark gene sets’’

collection (Liberzon et al., 2015). For each sample, the score was computed as the average expression z-score of all signature genes.

The list of ‘‘diapause-related autophagy genes’’ was obtained from He 2019 (He et al., 2019).

Survival analysis
For the survival analysis, we utilized The Cancer Genome Atlas (TCGA) CRC cohort (Cancer Genome Atlas, 2012). Gene expression

(RSEM z-scores) and overall survival information was retrieved from the ‘‘Firehose’’ portal (https://gdac.broadinstitute.org/) for colon

adenocarcinoma (COAD) and rectal adenocarcinoma (READ), and merged (COREAD). Embryonic pausing signature score was

computed for each sample by using differentially expressed genes. As described in the previous section, first the expression value

of each gene (z-score) was multiplied by its sign from the differential gene expression analysis (�1 for downregulated, +1 for upre-

gulated genes). Next, the embryonic pausing signature was computed by averaging the values. To determine the cut-off between

high and low expression, all percentiles were computed, and the best-performing threshold (in terms of the p value for the corre-

sponding observation, regardless of the direction of the change) between the two groups was selected as the cut-off. We then

applied the Kaplan-Meier model and log rank test was used to determine the p value.

For autophagy, the gene signature was obtained from ‘‘GO_REGULATION_OF_AUTOPHAGY’’ from the Gene Ontology Con-

sortium (GO:0010506). The autophagy signature score was computed with the samemethod as previously described for the pausing

signature, with the exception that z-scores were not multiplied by +1/-1. Kaplan-Meier model and log rank test were then used to

evaluate the effects of autophagy on survival in the CRC cohort (COREAD). We applied the same method to other TCGA cohorts

to identify cancer types in which autophagy was associated with poor survival.

In vitro chemotherapy drug treatments
CRC cells were treated in vitro with the chemotherapies at these indicated doses: CPT-11 (1 mM), INK 128 (25 nM), SBI-0206965

(2.5 mM) and Chloroquine (20 mM).

Cell growth analysis
For cell growth analysis by counting, cells were plated inmultiple T25 flasks (0.5x106 cells for POP66 and CSC28; 1x106 for POP92 and

HT29) in 7mLofmediumand treatedwithDMSO (vehicle control), CPT-11 (1mM), INK128 (25nM), SBI-0206965 (2.5mM)or combination

(CPT-11+SBI-0206965) at the indicated treatment concentrations.Cells were treated twice aweek for the indicated durations. To count,

cells from1flaskofeach indicated treatmentweredissociatedandcountedmanuallyusingahemocytometerafter trypanblueexclusion.

All cells under treatment were subjected to brief trypsinization every 7-10 days to maintain spheroid growth in logarithmic phase.
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Fluorescent dye label retention assay
CRC cultures were labeled with Vybrant DiD (Molecular Probes, Cat # MP22887) according to manufacturer’s instructions. Labeled

samples were treated with either DMSOor CPT-11 (1 mM) for 14 days (2 times per week). At days 0, 7 and 14 on treatment, and day 24

(10 days post-treatment cessation), cultures were dissociated, labeled with SYTOX Blue nucleic acid stain (Invitrogen, Cat # S11348)

and were assessed for the degree of Vybrant DiD staining present within each sample. Cytofluorimetric analysis of treated cultures

post-DiD staining was done on the BD LSR-II (BD Biosciences). Cells were initially gated for live cell population (sytox negative

stained cells) and then for Vybrant DiD-negative (DiD-) and DiD-positive (DiD+) cells. Negative control samples were cells that

were not labeled with Vybrant DiD and were used to set the gate to detect DiD� events. Subsequently, post-labeling treated cells

that were in this DiD� gate were determined to have entirely lost their initial label. Cells not found in this gate were determined to

be positive for Vybrant DiD dye label. Percentage of cells found in each gate was determined at the indicated time points using

FlowJo software (version 10) and statistical analysis was performed using the GraphPad Prism software (version 6).

Real-time PCR
Quantitative real-time PCRwas performed as previously described using Superscript III (Invitrogen, Cat # 18080093) to amplify cDNA

and SensiFAST SYBR Hi-ROX qPCR kit (FroggaBio, Cat # BIO-92020) for real-time PCR (O’Brien et al., 2012). Housekeeping

gene RPLP0 was used for normalization. Primer sequences: ULK1 Fwd: GGACACCATCAGGCTCTTCC, Rev: GAAGCCGAAGT

CAGCGATCT (PrimerBank ID:28011640); WIPI1 Fwd:AACAGGTCTATGTGCTCTCTCT, Rev: CTCATGGGCAGCAATAGTGC

(PrimerBank ID: 157388938c3); WIPI2 Fwd: CCATCGTCAGCCTTAAAGCAC, Rev: TCCAGGCATACTATCAGCCTC (PrimerBank

ID: 75677338c1); WDR45 Fwd: GAGAAGCAACTGCTAGTGTTCC, Rev: GGCTGGTTTAGAGACACACAG (PrimerBank ID:

71483644c3); OPTN Fwd: CCAAACCTGGACACGTTTACC, Rev: CCTCAAATCTCCCTTTCATGGC (PrimerBank ID: 56549110c1);

ATG2A Fwd: TGTCCCTGTAGCCATGTTCG, Rev: TCAGGATCTCCGTGTACTCAG (PrimerBank ID: 239047270c2); ATG13 Fwd:

TCACTTTGTGGACCGTCCCTA, Rev: TGGTACACACTTCTTGAGAGTCT (PrimerBank ID: 326806953c3); ATG16L2 Fwd: TGGA

CAAGTTCTCAAAGAAGCTG, Rev: CCTCAGTGCGACCAGTGAT (PrimerBank ID: 55743107c1); RPLP0 Fwd: CAGACAGACACTG

GCAACA, Rev: ACATCTCCCCCTTCTCCTT (Spandidos et al., 2010; Roulois et al., 2015).

Western blot analysis
Cultures were pelleted, washed with ice-cold PBS and then lysed in RIPA buffer (Thermo Fisher, Cat # 89900) supplemented with

protease/phosphatase inhibitors (Cell Signaling, Cat # 5872) for 15 minutes at 4�C. Samples were then sonicated in a Q800 Water-

bath sonicator (QSonica) for 15 cycles of 8 s ON, 15 s OFF. Lysates were cleared after centrifugation at 16000 x g for 15 min, protein

concentration was determined using Pierce BCA Protein Assay kit (Thermo Fisher Scientific, Cat # 23225) and lysates were then

boiled in Laemmli buffer for 5 minutes (Bio-Rad, Cat # 1610747). Proteins were resolved by SDS-PAGE (Bio-Rad, Cat # 456-

1094) and transferred onto polyvinylidene fluoride membranes (Millipore, Cat # IPFL00010). Membranes were blocked for 1 hour

in Odyssey Blocking Buffer (LI-COR, Cat # 927-40003), and subjected to immunobloting overnight at 4�C with the following primary

antibodies: Phospho-Akt (Ser473, Cell Signaling Tech., Cat #4060, RRID:AB_2315049, 1:1000), Akt (Cell Signaling Tech., Cat #4691,

RRID:AB_915783, 1:1000), Phospho-4E-BP1 (Thr37/46, Cell Signaling Tech., Cat #2855, RRID:AB_560835, 1:1000), 4E-BP1 (Cell

Signaling Tech., Cat #9452, RRID:AB_331692, 1:1000), Phospho-S6 (Ser240/244, Cell Signaling Tech., Cat #5364,

RRID:AB_10694233, 1:1000), S6 (Cell Signaling Tech., Cat #2217, RRID:AB_331355, 1:1000), p-ERK1/2 (T202/Y204, Cell Signaling

Tech., Cat #4370, RRID:AB_2315112, 1:1000), ERK1/2 (Cell Signaling Tech., Cat #9102, RRID:AB_330744, 1:1000), Phospho-ULK1

(Ser757, Cell Signaling Tech., Cat #6888, RRID:AB_10829226, 1:1000), ULK1 (Cell Signaling Tech., Cat #8054, RRID:AB_11178668,

1:1000), Atg13 (Cell Signaling Tech., Cat #13273, RRID:AB_2798169, 1:1000), LC3B (Sigma, Cat #L7543, RRID:AB_796155, 1:1000),

p16 (Santa Cruz, Cat # sc-1661, RRID:AB_628067, 1:250), p27 (BD Biosciences, Cat # 610241, RRID:AB_397636, 1:500), b-actin

(Sigma, Cat #A2228, RRID:AB_476697, 1:2000). Bound antibodies were visualized using IRDye secondary antibodies (LI-COR,

Cat # 926-68073, 926-32213, 926-68072, 926-32212; RRID:AB_10954442, RRIDs:AB_621848, AB_10953628, AB_621847) on an

Odyssey Classic Infrared Imaging System (LI-COR).

Cell cycle and apoptosis/necrosis
For cell cycle analysis, cells were treated for 14 days with DMSO, CPT-11 (1 mM), trypsinized, washed and fixed in ice-cold ethanol

overnight. Cells were then washed with PBS twice and resuspended in FxCycle Violet (Invitrogen, Cat # F10347) following the man-

ufacturer’s instructions. For apoptosis/necrosis analysis, Annexin V-FITC and propidium iodide (PI) staining (Annexin V-FITC

apoptosis detection kit, Thermo Fisher, Cat # 88-8005-72) was performed following themanufacturer’s instructions. For both assays,

cells were analyzed on BD LSR-II (BD Biosciences). Data was analyzed with FlowJo v10.

Mathematical modeling, stochastic simulations
Here we describe the quantitative analysis of clonal response of lentiviral barcoded human CRC xenografts to chemotherapy treat-

ment. Our goal is to infer rules of cancer cell dynamics leading to the observed heterogeneity in clonal output of individual cells. The

central question we address is: Does clonal heterogeneity come from (a) ‘‘selective dynamics’’ from fitness difference among

clones, or (b) from the stochastic dynamics of an ‘‘equipotent’’ population of tumorogeneic cells? We find that the experimental

data is consistent with an equipotent scenario, and the shape of the barcode frequency distribution can be explained by a model
Cell 184, 226–242.e1–e12, January 7, 2021 e9



ll
Article
with proliferative hierarchy (Goyal et al., 2015; Lan et al., 2017) and sub-exponential (power law) tumor growth kinetics (West and

Newton, 2019).

Nature of barcode frequency distribution across treatments

To get a quantitative understanding of clonal dynamics during tumor growth we analyzed the barcode frequency distribution

obtained from the experiments. Here, we show that the barcode frequency distribution exhibits a log-linear relationship, i.e., a linear

relationship on a log-log plot: pðnÞ � n�ð1+aÞ. We estimated the value of a using maximum likelihood estimation (Clauset et al., 2009).

In agreement with the maximum likelihood estimates of a, the corresponding cumulative distribution QðnÞ=P
n0 >npðn0Þ � n�a also

exhibits a log-linear relationship (see Figures 3 and S5).

Origin of log-linear distribution in the context of population dynamics from interactions between clones

Cellular interactions are thought to constrain tumor growth, causing an initially exponentially growing tumor to slow down and exhibit

power law growth kinetics (West and Newton, 2019). If cancer growth kinetics follow power law kinetics, i.e., _n= n1�a + qC, where a

quantifies the interaction between dividing cells, q is the rate for a particular clone to transition to rapidly cycling state, and C is total

number of progenitor like engrafted cells each with a unique barcode, then the population size at long times grows polynomially,

nðtÞ � ðatÞ1=a. Now, for the ith clone, its size ci follows mean-field kinetics given by, _c= c=na = c=at, giving cðT � tÞ= ðT=tÞ1=a.
Assuming independent and stochastic entry of each clone, the probability distribution for a clone to get to a particular size is, pðn;
TÞz R T

0 dtqe�qtdðn � cðT � tÞÞ. Although, this integral ignores the stochasticity in the birth-death process of the fast-cycling cells,

it still highlights the source of the log-linear relationship. The integral is readily evaluated via a change of variables y = cðT �tÞ leading
to t =Ty�a, giving pðn;TÞ � R

dyy�ð1+aÞdðn�yÞ � n�ð1+aÞ for large clones.

Origin of log-linear distribution in the context of population dynamics from selective dynamics

To understand how selective dynamics leads to log-linear distribution, let us consider clones with heterogeneous rates of prolifera-

tion. For a clone i undergoing a stochastic birth-death process its clone size distribution is given by piðnÞ= lie
�nli where li depends on

its proliferative capacity and time. If we assume a generic Gamma distribution for the heterogeneity for l, i.e., pðlÞ= abe�blla�1=GðaÞ,
the overall clone size distribution is given by pðnÞ= R

dlle�nlpðlÞ= a=b

ðn=b+ 1Þ1+ a, which asymptotically behaves in a log-linear fashion,

pðnÞ � n�ð1+ aÞ.
Detailed Mathematical Analysis

Here we present derivation of different models that provide the basis for the heuristic analysis presented above.

(i) No proliferative hierarchy – Let r be the birth-rate of an injected cell and m be its death rate. The outcome of such a process is

summarized into a distribution of tumor having n cells at time t starting from one cell.

p n; tj1;0ð Þ= 1� pS tð Þ� �
dn;0 +pS tð Þ 1� að Þ

a
an 1� dn;0ð Þ (1)
where a= A1 � 1Þ=ð ðA1 � n0Þ and p = A1ð1� n0Þ=ðA1 � n0Þ
S where A1 = eðr�mÞt and n0 =m=r.

(ii) Proliferative hierarchy: If there is a proliferative hierarchy, to calculate the distribution of having n number of cells starting with

one injected cell, Pðn; T j1Þ is given by a combination of three mutually exclusive processes: (i) the tumor dies that is n= 0 if the

first event for the initial starting cell is death, i.e.,
R T
0 e�ðq+mÞtmdt, (ii) nothing happens, and (iii) the first event is differentiation after

which growth of progenitor cell controls the fate of the tumor, P+ ðn;T j1Þ; these three contributions are mutually exclusive and

are separated in Equation 2 for clarity. Here q is the transition rate between the states.

P n; T j1ð Þ= 1� pSð Þ 1� e� q+mð ÞT� �
dn;0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

+ e� a+mð ÞTdn;1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
II

+

ZT

0

e� q+mð Þt 3 qdtð Þ3 e�r T�tð Þ 1� e�rðT�tÞ� �n�1
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
III

(2)

The non-trivial term when the first event is differentiation can be calculated readily:
P+ ðn;T j1Þ= q

ZT

0

dte�ðq+mÞte�rðT�tÞ�1� e�rðT�tÞ�n�1
(3)
=
q

r
e�ðq+mÞT

Z1�A�1

0

dy
yn�1

ð1� yÞn (4)
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=
q

r
e�ðq+mÞTBðA; n; n� 1Þ (5)
where nhðq +mÞ=r and A= erT .
Let us evaluate BðA; n;nÞ for large A and n> 0 and ns1 using integration by parts.

BðA; n; nÞ=
Z1�1=A

0

dyynð1� yÞ�n (6)
= � yn
ð1� yÞ�n+ 1

1� n

�����
1�1=A

0

+
n

1� n

Z
dyyn�1ð1� yÞ�n+ 1 (7)
= � ð1� 1=AÞn A
n�1

1� n
+

n

1� n
BðA; n� 1; n� 1Þ (8)
Recursion gives,
B A; n;nð Þ= �
Xn

k = 0

1� 1=Að Þn�k
An�k�1 G n+ 1ð Þ

G n� k + 1ð Þ
G 1� nð Þ

G k + 2� nð Þ +G n+ 1ð Þ G 1� nð Þ
G n+ 1� nð ÞB A; n� n;0ð Þ (9)
Finally giving,
B A; n;nð Þ= �
Xn

k = 0

1� 1=Að Þn�k
An�k�1 G n+ 1ð Þ

G n� k + 1ð Þ
G 1� nð Þ

G k + 2� nð Þ +G n+ 1ð Þ G 1� nð Þ
G n+ 2� nð Þ 1� An�n�1

� �
(10)
An asymptotic approximation for n[1 and A/N is given by
P n;T j1ð Þz 1� pSð Þ 1� e� a+mð ÞT� �
dn;0 + e� a+mð ÞTdn;1 + e� a+mð ÞTpSn

1

n1�n
1� dn;0ð Þ (11)
Note that the probability distribution for large n behaves as n�ð1�n
Þ, which is what we observe for the T0 distribution, indicated by the

negative slope in Figures 3C and 3D.

Crowding – Power Law Growth Kinetics

If we assume crowding reduces the growth in a population dependent way, then we can assume the growth rate to be r=na, where nðtÞ
satisfies equation _n= rn1�a, and solves to nðtÞ= ðrta+ 1Þ1=a. Now for a birth process with r=na as the time dependent birth rate,

pðn;T j1;tÞ= e�Rðt;TÞð1� e�Rðt;TÞÞn�1, where R t;Tð Þ= RT
t

r=n t
0� �a

dt
0
= log ðð rTa+ 1Þ=ðrta+ 1ÞÞ1a.

Putting this together for proliferative hierarchy with crowding model, we get for n[1

Pðn; T j1;0Þ=
ZT

0

dtqe�ðq+mÞte�Rðt;TÞ�1� e�Rðt;TÞ�n�1
(12)
�
Z1�1=A

0

dye�ðq+mÞTð1�yÞa yn�1

ð1� yÞ�a (13)
� BðA;�a;n� 1Þ (14)
which behaves as n�ð1+aÞ. Hence, the cumulative distribution be
haves as n�a.
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Stochastic simulation

We performed stochastic simulations using Gillespie algorithm (Gillespie, 1977) to test the validity of our mathematical analysis

(https://github.com/smcgibbo/Gillispie-Simulations). With the aim to understand the role of power law kinetics on clone size distri-

bution, we assume mean size of tumor to follow nðTÞ � T1=a, and assume growth rate of a clone to be proportional to 1=nðtÞa, such
that the mean-field dynamics of each clone follows _ci � ci=nðtÞa. The cumulative distributions obtained from the simulation (model

figure, below), agrees quantitatively with the mathematical analysis and shows a log-linear relationship for clone size distribution.

Here we have focused on early time population dynamics where a tumor’s net growth is dominated by power law kinetics. At longer

times, as tumor progresses, the steady state distribution of clones will depend on the tumor’s long-term birth and death kinetics. The

model figure depicts time evolution of cumulative distributions obtained from simulation of 105 clones with growth kinetics charac-

terized by power law with (A) a= 0:3, (B) a= 0:5, and (C) a= 0:7. Time is measured in number of generations and the solid line shows

the slope of a on the log-log plot.
A B C

Model Figure: Cumulative Distributions of Simulated Power Law Growth Kinetics
QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical details of experiments can be found in the figure legends, including the significance computed, statistical test used,

and number of independent experiments performed for each assay (n). The results of quantitative data are presented as the

mean ± standard deviation (SD) or standard error of mean (SEM), as indicated.

Statistical analyses were performed as indicated with each assay in the Method Details section. Statistical differences between

data pairs were analyzed by Student’s t test. For multiple comparisons, one-way or two-way ANOVA was used, as indicated. For

barcode composition analysis, Wilcoxon rank-sum test with Holm multiple testing correction was used. For Kaplan-Meier analysis,

the log rank test was used. Differences were considered statistically significant when p < 0.05. Significance thresholds for differential

gene expression or pathway analyses were FDR < 0.05.

For MATH score analysis, to test the assumptions of the t test, specifically those of normality and equal variance, we performed the

Shapiro-Wilk normality test and Levene’s Test of Equality of Variances, respectively. Shapiro-Wilk p value = 0.58 (group 1) and

p value = 0.98 (group 2) indicating that the distribution of the data is not significantly different from a normal distribution. Two-sample

Levene’s test p value = 0.27 indicated that the variances of these two groups are not significantly different.
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Supplemental Figures

Figure S1. Response of CRC PDXs to Chemotherapy Treatment, Related to Figure 1 and Table S1

A: Schematic of in vivo treatment for two CRC patient-derived xenograft (PDX) models (POP66 and CSC28). B and C: Body weight of NOD/SCID mice bearing

POP66 CRC PDXs (B) from Figure 1B and (D), and CSC28 CRC PDXs (C) from Figure 1D and (F) over the course of the treatment. Data are body weight change

calculated as the average percentage of the body weight of mice in each treatment group at day 0 of treatment ± SEM. D and E: Tumor growth curves (D) and

Kaplan-Meier survival curves (E) of POP66 PDXs treated with Saline (vehicle control), or chemotherapy 5-FU/LV, Oxaliplatin (OXA), or the combination (FOLFOX).

Dotted line indicates when treatment was stopped. Each point on growth curve represents the mean tumor volume ± SEM. F and G: Tumor growth curves (F) and

Kaplan-Meier survival curves (G) of CSC28 PDXs treated with Saline (vehicle control), 5-FU/LV, OXA, or FOLFOX. Each point on growth curve represents the

mean tumor volume ± SEM. Numbers in parentheses indicate biological replicates in that group. Dotted line indicates when treatment was stopped. Median time

(days) to reach tumor volume 400mm3 is listed for these POP66 and CSC28 PDXs. Statistical significance determined by log rank test (E and G). H: IHC (H&E, Ki-

67, TUNEL stain, 20x) analysis of tumors from (D) and (F). Scale bar is 50 mm. I and J: Percent Ki-67 positive cells (I) and percent area Necrosis (J) are plotted.

Statistical significance determined by one-way ANOVA. *p < 0.05.
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Figure S2. Long-Term Chemotherapy Treatment of CRC PDXs, Related to Figure 1
A: Schematic of in vivo long-term treatment for POP66 andCSC28 CRCPDXmodels. B and C: Bodyweight of NOD/SCIDmice bearing POP66 (B) and CSC28 (C)

CRC PDXs over the course of the treatment. Data are body weight change calculated as the average percentage of the body weight of mice in each treatment

group at day 0 of treatment ± SEM. D and E: Tumor growth curves (D) and Kaplan-Meier survival curves (E) of POP66 PDXs treated with DMSO (vehicle control) or

treated long-termwith CPT-11 (214 days). Each point on growth curve representsmean tumor volume ±SEM. Statistical significance determined by log rank test.

F and G: Tumor growth curves (F) and Kaplan-Meier survival curves (G) of CSC28 PDXs treated with DMSO (vehicle control) or treated long-term with CPT-11

(469 days). Each point on growth curve represents mean tumor volume ± SEM. Numbers in parentheses indicate biological replicates in that group. Statistical

significance determined by log rank test. H: Representative IHC (H&E, Ki-67, TUNEL stain, 20x) images of DMSO, CPT-11 Long-term treated and CPT-11

Resistant tumors. Scale bar is 50 mm. I: Reinjection of the three POP66 CPT-11-Resistant tumors that grew on treatment (from D) and re-treatment with DMSO

(vehicle control) or CPT-11. Each point on growth curve represents mean tumor volume ± SEM, t test. Numbers in parentheses indicate biological replicates in

that group. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure S3. Genetic Intratumoral Heterogeneity Analysis, Related to Figures 1, S1, and S2 and Data S1

SNV analysis of POP66 and CSC28 tumor samples. A: Binomial distribution plots of POP66 tumor samples for each mutation in a diploid region of the genome

across the full range of possible variant allele fractions (0 to 1 by 0.001 increments) as a function of sequencing depth and allele read counts. B: MATH scores

plotted for the indicated POP66 samples. Statistical significance determined by unpaired t test. C: Binomial distribution plots for the indicated CSC28 tumor

samples. D and E: Clone tree (D) and subclone frequencies (E) for POP66, based on SNVs in genomic regions that were diploid across all tumor samples (P0, G0,

Vehicle tumors, CPT-11 Regrowth and the Resistant tumors). F and G: Clone tree (F) and subclone frequencies (G) for CSC28, based on SNVs in genomic regions

that were diploid across all tumor samples (G0, Vehicle tumors and CPT-11 Regrowth). Each tree node corresponds to a genetically distinct cell subpopulation,

while tree edges represent evolutionary descent. Subclone frequencies represent the proportion of cells that arose from a subpopulation and its descendants. All

descendent subpopulations inherit their ancestors’ mutations, such that subclone frequencies also indicate the proportion of cells possessing themutations that

first arose in the corresponding subpopulation. H: Mutational Shannon diversity indices (MSDIs) for POP66 and CSC28 samples. Statistical significance

determined byMann-Whitney rank-sum test. Box mid-lines showmedian; box boundaries show first and third quartiles; box whiskers showmost extreme points

lying within 1.5 times the interquartile range below the first quartile, and 1.5 times the interquartile range above the third quartile. ***p < 0.001.
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Figure S4. Characterization of CRC PDXs Post-chemotherapy, Related to Figure 2 and Table S2

A and B: Mean T0 rank of the top 10 most-enriched barcodes from each sample in each of the treatment groups. C and D: Tumor weights. E and F: Number of

days from tumor implantation to sacrifice. Significant pairwise comparisons (q < 0.05, pairwise Wilcoxon rank-sum test with Holm multiple testing correction)

indicated by horizontal lines above boxes. G and H: Distribution of the largest clones in each treatment group. A-H: Left panel plots are POP66 and right panel

plots are CSC28. I: Schematic of in vivo barcoding and long-term treatment for the POP66 CRCPDXmodel from Figures 1 and S2. J: Pie charts showing barcode

clone composition in POP66 CPT-11 Resistant Tumors #1 and #2. Barcode clone composition in representative (two each) DMSO and CPT-11 Regrowth tumors

are also shown for comparison. K: Shannon Diversity Index plotted for barcodes from DMSO, CPT-11Regrowth and Resistant tumors for POP66. Differences in

barcode composition was not statistically significant using pairwise t test.
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Figure S5. Clonal Composition for CRC PDXs Post-chemotherapy, Related to Figure 3

A and B: Clonal composition for POP66 (A) and CSC28 (B) xenografts under different treatments show the log-linear relationship. For each plot, dashed blue lines

represent individual tumors and solid black line represents the average across all the tumors in a treatment group.
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Figure S6. DTP-State Cells Express Signatures of Embryonic Pausing andAssociated Signaling Pathways, Related to Figure 4 and Tables S3,
S4, S5, and S6

A: Schematic diagram of the experimental protocol and sample collection for RNA-seq. B: DAVID analysis of the major gene ontology (GO) categories associated

with upregulated (top panel) and downregulated (bottom panel) genes in DTP state tumors, with their respective p values (-log10). A curated list of GO categories

(FDR < 0.05) is displayed. C: MA plot like in Figure 4B, showing log2 fold-changes in expression in CPT-11 Resistant tumor samples over CTRL. Genes

differentially expressed (FDR < 0.05 and fold-change > 1.5 or < 2/3) are highlighted in green. D: Venn diagrams showing number of genes upregulated (top panel)

or downregulated (bottom panel) and any overlap in genes between CPT-11 DTP-state tumors and CPT-11 Resistant tumors. E: PCA plot like in Figure 4E,

including CPT-11 Resistant tumors. F: Hierarchical clustering of DMSO-treated (CTRL) tumors, CPT-11 DTP-state tumors and early embryonic developmental

(legend continued on next page)
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stages, including diapaused epiblast. EPI, epiblast; MOR, morula; ICM, inner cell mass; PrE, primitive endoderm. G: Score of the embryonic diapause signature

like in Figure 4G, including CPT-11 Resistant samples. Data are mean ± SD, Welch two-sample t test. H: Expression levels (z-scores) of the individual genes from

the embryonic diapause signature for all samples (CTRL, CPT-11 DTP state, CPT-11 Regrowth, CPT-11 Resistant) computed from RNA-seq data. Genes up-

regulated (n = 14, left panel) and downregulated (n = 110, right panel) in both paused ESCs and diapaused embryos, or an equal number of randomly selected

genes, are showed separately for each sample group. Statistical significance determined by Welch two-sample t test. I: Scores of the mTORC1 signature (from

the MSigDB Hallmark gene set) in all samples computed from RNA-seq data. Data are mean ± SD, Welch two-sample t test. J: Scores of the Myc signature (from

the MSigDB Hallmark gene set) in all samples computed from RNA-seq data. Data are mean ± SD, Welch two-sample t test. K: Gene expression analysis of

previously reported diapause-related autophagy genes in CTRL and CPT-11 DTP-state samples, taken from RNA-seq data. Data are mean ± SD, normalized to

the average of the CTRL group (dashed line), Student’s t test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Figure S7. CPT-11-Induced Diapause-like DTP State Is Slow Cycling and Is Maintained by Upregulation of Autophagy, Related to Figures 5

and 6

A: Bodyweight of NOD/SCIDmice bearing CRCPDXs (from Figure 5A) over the course of treatment. Bodyweight change was calculated as the percentage of the

body weight of mice in each treatment group at day 0 of treatment. Data are shown as mean ± SEM. Numbers in parentheses denote the biological replicates in

that group. B: Kaplan-Meier survival curves for CRC PDXs in Figure 5A showing tumors less than 500mm3 after treatment, with median time to reach 500mm3 for

DMSO or CPT-11 treated tumors listed, log rank test. C: GSEA Hallmarks analysis of the CPT-11-induced DTP state, diapaused embryo and paused ESCmodels

and several cell cycle arrest models as measured by the Normalized Enrichment Score (NES) for all significant pathways (FDR < 0.05). Cell cycle arrest models

include: ESCs 2i: Embryonic Stem Cells cultured in MEK/GSK inhibitor containing media; Colon Nut3a:Nutlin3a treated HCT116 cells; NCC Nut 3a: Nutlin3a

treated Neural Crest cells; Colon Pal: Palbociclib treated DLD1 cells; MECs p21: spontaneous p21 arrested human mammary epithelial cell line MCF10A; ESCs

Rb: Rb overexpression arrested Embryonic StemCells. D: Western blot analysis of CDK inhibitors p16 and p27 in POP66 and POP92 cultures treated with DMSO

(vehicle control) or CPT-11 (1 mM) for 14 days in vitro. Data shown are representative of at least n = 3 independent experiments. E: Representative cytofluorimetric

histograms of Vybrant DiD labeling for POP66 cultures at day 0 (left plot) or on day 14 of DMSO and CPT-11 (1 mM; right plot) treatment (for data in Figure 5G).

(legend continued on next page)
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Table indicates cytofluorometrically determined percent of Vybrant DiD label positive cultures treated with DMSO or CPT-11 (1 mM) at 0, 7, 14 and 24 days after

the start of treatment. Treatment was stopped on day 14. F: Total RNA amount per cell in POP66, POP92 and CSC28 cultures treated with DMSO or CPT-11

(1 mM) for 14 days. Data shown as mean ± SD of at least n = 3 independent experiments, t test. G: Apoptosis/Necrosis analysis (Annexin V/PI label) performed on

POP66 and POP92 cultures treatedwith DMSO,CPT-11 (1 mM), Chloroquine (CQ, 20 mM) or combination for 5 days. Data shown asmean ±SD, n = 3 independent

experiments, one-way ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001, ns = not significant.
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