
Article
Absolute scaling of single
-cell transcriptomes
identifies pervasive hypertranscription in adult stem
and progenitor cells
Graphical abstract
Highlights
d Absolute scaling detects global transcriptional output in

single-cell RNA-seq data

d Adult cell types display a wide range of transcriptional output

d Hypertranscription is pervasive in activated stem/progenitor

cells across organs

d Hypertranscription is induced during regeneration prior to

proliferation
Kim et al., 2023, Cell Reports 42, 111978
January 31, 2023 ª 2022 The Authors.
https://doi.org/10.1016/j.celrep.2022.111978
Authors

Yun-Kyo Kim, Brandon Cho,

David P. Cook, Dan Trcka,

Jeffrey L. Wrana, Miguel Ramalho-Santos

Correspondence
yun-kyo.kim@sickkids.ca (Y.-K.K.),
mrsantos@lunenfeld.ca (M.R.-S.)

In brief

Using absolute scaling to estimate

transcript content in single-cell RNA-seq

data, Kim et al. identify hypertranscription

within adult stem/progenitor cell types of

high-turnover organs. Adult

hypertranscription states are dynamically

regulated during tissue differentiation

and regeneration and share molecular

features with hypertranscription

previously reported in embryonic

systems.
ll

mailto:yun-kyo.kim@sickkids.ca
mailto:mrsantos@lunenfeld.ca
https://doi.org/10.1016/j.celrep.2022.111978
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2022.111978&domain=pdf


OPEN ACCESS

ll
Article

Absolute scaling of single-cell transcriptomes
identifies pervasive hypertranscription
in adult stem and progenitor cells
Yun-Kyo Kim,1,2,3,* Brandon Cho,2,3 David P. Cook,2 Dan Trcka,2 Jeffrey L. Wrana,2,3 and Miguel Ramalho-Santos2,3,4,*
1Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
2Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
3Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
4Lead contact
*Correspondence: yun-kyo.kim@sickkids.ca (Y.-K.K.), mrsantos@lunenfeld.ca (M.R.-S.)

https://doi.org/10.1016/j.celrep.2022.111978
SUMMARY
Hypertranscription supports biosynthetically demanding cellular states through global transcriptome upre-
gulation. Despite its potential widespread relevance, documented examples of hypertranscription remain
few and limited to early development. Here, we demonstrate that absolute scaling of single-cell RNA-
sequencing data enables the estimation of total transcript abundances per cell. We validate absolute scaling
in known cases of developmental hypertranscription and apply it to adult cell types, revealing a remarkable
dynamic range in transcriptional output. In adult organs, hypertranscriptionmarks activated stem/progenitor
cells with multilineage potential and is redeployed in conditions of tissue injury, where it precedes bursts of
proliferation during regeneration. Our analyses identify a common set of molecular pathways associatedwith
both adult and embryonic hypertranscription, including chromatin remodeling, DNA repair, ribosome biogen-
esis, and translation. These shared features across diverse cell contexts support hypertranscription as a gen-
eral and dynamic cellular program that is pervasively employed during development, organ maintenance,
and regeneration.
INTRODUCTION

Cells dynamically regulate their biosynthetic capacities to fulfill

the requirements of demanding cell-state transitions.1 At the

level of transcription, cells can meet these demands by entering

a state of relative hypertranscription, which is characterized by a

global upregulation of nascent transcriptional output.2 This

global shift powers biological phenomena requiring substantial

increases in total biomass, such as rapid proliferation, secretion,

and cell activation.1,2 Hence, hypertranscription has been pro-

posed to play major roles in developmental transitions, adult or-

gan homeostasis, and tumorigenesis.2 Our group and others

have reported evidence supporting the occurrence and func-

tional relevance of hypertranscription in mouse embryogenesis

and select human cancer cell types.3–8 However, the occur-

rence of hypertranscription in adult physiology remains largely

unexplored.

Despite the paucity of data in adult tissues, work inmouse em-

bryos and mouse embryonic stem cells (mESCs) has identified

five recurring ‘‘hallmarks’’ of hypertranscription. First, hypertran-

scribing cells display a transcriptome-wide increase in gene

expression, including at housekeeping genes and ribosomal

RNA (rRNA).4,9 These changes occur at the levels of both

steady-state and nascent transcripts and result in measurable

increases in total cellular RNA content.4 Second, hypertranscrip-
This is an open access article under the CC BY-N
tion is dependent on a decondensed and distinctly permissive

chromatin landscape, maintained by the activity of euchromatic

remodeling factors.10,11 One notable factor is the ATP-depen-

dent remodeler Chd1, which binds specifically to H3K4me3

and is required for the transcriptional output of proliferating

epiblast cells.4 Third, hypertranscribing cells upregulate protein

synthesis/translational machinery, which is necessary for the

continuous translation and steady-state maintenance of Chd1

and several other unstable euchromatic regulators.10 Fourth, hy-

pertranscribing cells endogenously accumulate promoter-prox-

imal double-strand breaks (DSBs), thus displaying a heightened

dependency on DNA repair factors.12 Fifth, hypertranscription is

thought to be mediated by the expression of general and ‘‘uni-

versally amplifying’’ transactivators, of which the Myc family of

transcription factors is the best characterized.3,13

A critical requirement for detecting hypertranscription is the

ability to distinguish absolute differences in transcript expression

between samples or cell states. Despite substantial modern ad-

vancements in bulk and single-cell transcriptomic profiling,

such measurement is complicated by the standard use of be-

tween-transcriptome normalization procedures.14 For instance,

normalization to read depth in RNA-sequencing (RNA-seq) data

or housekeeping genes in qRT-PCR assumes similar amounts

of cellular RNA content between samples of interest. Analysis of

single-cell RNA-seq (scRNA-seq) commonly employs similar
Cell Reports 42, 111978, January 31, 2023 ª 2022 The Authors. 1
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global scaling approaches, which are used tominimize the impact

of stochastic technical effects, including capture inefficiencies,

amplification biases, and variable sequencing depths.14–16 How-

ever, the global scaling tools used to eliminate these technical

biases also suppress genuine biological differences in mRNA

content, thereby masking the detection of global shifts driven

by hypertranscriptive states.14 Thus, the analysis of hypertran-

scription at single-cell resolution requires development of alterna-

tive methodologies.

In previous work investigating hypertranscription, we circum-

vented the problem of between-sample normalization by devel-

oping cell-number-normalized (CNN) profiling methods, which

accurately reproduce absolute cellular transcript levels.3,4,9

Here, we apply an analogous approach to single-cell transcrip-

tomic data by leveraging unique molecular identifiers (UMIs) or

External RNA Controls Consortium (ERCC) spike-in sequences,

two tools commonly included in various scRNA-seq proto-

cols.17–19 We use these tools to perform absolute scaling of

scRNA-seq data, which we validate as being able to faithfully

capture hypertranscription in ground-truth settings and develop-

mental cases of hypertranscription previously demonstrated us-

ing bulk CNN RNA-seq. We apply this methodology to multiple

scRNA-seq datasets in heterogeneous adult tissues and report

the identification of progenitor cell lineages displaying hallmarks

of hypertranscription during homeostasis and regeneration.

These results support a model wherein hypertranscription acts

as a general mechanism to facilitate dynamic regulation of

cellular biosynthetic capacity during development, organ ho-

meostasis, and regeneration.

RESULTS

Absolute scaling accurately estimates transcript
content in ground-truth data
To estimate absolute cellular transcript abundances in scRNA-

seq data, we focused on protocols using UMIs or ERCCs for

normalization and quality control (Figure 1A). ERCC spike-in se-

quences are typically used in flow cytometric methods (e.g.,

Smart-seq2, CEL-seq) and are added to lysis buffer solutions

at known concentrations. Similar to our previous bulk CNN

RNA-seq methodology, the equal distribution of spike-ins prior

to capture allows scaling factors to be generated using the

ERCC fraction of reads.3 These scaling factors normalize for

downstream technical effects while also retaining biological dif-

ferences in total transcript abundance.14 In contrast, UMIs are

typically used in droplet and split-pooling methods (10x Geno-

mics, sci-RNA-seq3) and uniquely label each transcript molecule

during mRNA capture. Although raw UMI counts retain variation

due to per-cell capture efficiency and dropout, we reasoned that

they can still provide an acceptable estimate of transcript abun-

dance when analyzed across large enough samples of cells.

Collectively, we refer to these approaches to normalization as

absolute scaling, in contrast to the global scaling performed in

typical normalization of scRNA-seq data (Figure 1B).

To evaluatewhether UMIs and ERCCs can be used for absolute

scaling, we explored two ground-truth scenarios. First, we as-

sessed whether using raw UMI counts can distinguish differences

in total transcript abundance fromUMI-containing libraries gener-
2 Cell Reports 42, 111978, January 31, 2023
ated from singlets vs. doublets of cells. As doublet libraries are ex-

pected to contain roughly twice the mRNA of singlets, they repre-

sent one scenario of hypertranscription with mostly uniform

amplification across the transcriptome. We used three publicly

available 10xGenomicsdatasetswith experimental doublet anno-

tation: in two datasets based on peripheral blood mononuclear

cells (Cell Hashing, Demuxlet), we found that doublets contained

roughly 1.8 to 1.9 times the total transcripts as singlets, consistent

with previous reports (Figure 1C).20,21 These doublets also dis-

played similar increases in the expression of ribosomal and

housekeeping genes (Figures S1B–S1D). In mixtures of different

cell types (10x Mixture), such as human and mouse, transcript

content of singlets was reflective of known cell size differences

(17,946.0 UMIs in 293T vs. 10,522.0 UMIs in 3T3).22 Importantly,

transcripts in doublets were consistent with the aggregation of

these two cell types (mean of 26,222.5 UMIs), indicating accurate

capture of total abundance (Figure 1C).

Second, we assessed whether raw UMIs and ERCCs can

recapitulatemRNA differences in artificially generated pseudocell

libraries.We took advantage of the previously published ‘‘scRNA-

seq Mixology’’ experiment, which generated UMI- and ERCC-

containing CEL/Sort-seq libraries using extracted mRNA over a

four-step dilution series.23 This series contained material from

three different human cell lines and spanned an order of magni-

tude, sufficiently representing the variation found in hypertran-

scribing cells.3,4 As the mRNA content of each single-cell library

was known, we evaluated the reproduction of transcript abun-

dance using either raw total UMIs or ERCC-derived per-cell size

factors. Compared with global scaling, absolute scaling using

either method more accurately reproduced ground-truth differ-

ences in pseudocell transcript levels (Figures 1D and 1F). Impor-

tantly, changes in transcript abundance were seen to be largely

uniform across detected genes, analogous to what would be

observed in biological hypertranscription (Figures 1E and 1G).

We found that, regardless of platform, ERCC normalization

slightly outperformed raw UMI counts and generated lower inter-

cell variability in transcript abundance, particularly at higher-

ground-truth RNA amounts (Figures 1D–1G, S1E, and S1F).

Furthermore, subsampling analysis demonstrated that absolute

scaling retains accurate reproduction of ground-truth values

even at low cell numbers (Figure S1G). Together, these results

document the utility of ERCCs and UMIs in absolute scaling

and recovering global transcriptomic differences in scRNA-

seq data.

Validation of absolute scaling using embryonic
hypertranscription data
We next sought to test absolute scaling in previously established

contexts of hypertranscription. The early mouse embryo is espe-

cially well characterized in this regard and can be modeled

in vitro using mESCs.24 Specifically, serum/LIF-grown mESCs

are hypertranscriptional and represent the rapidly proliferating

early post-implantation epiblast, while mESCs under dual

GSK/MEK inhibition (2i medium) are comparatively hypo-

transcriptional and represent a pre-implantation-like state.9,24

We performed absolute scaling on an ERCC-spiked mESC

dataset generated using Fluidigm C1 containing both serum

and 2i cells.25 While globally scaled data showed only a modest



Figure 1. Absolute scaling reproduces ground-truth transcript content differences

(A) Schematic of ERCC and UMI tools within common scRNA-seq protocols. Tissue samples are disassociated into single cells and lysed to capture mRNA

transcripts. ERCC spike-in sequences are added to lysed contents and captured alongside endogenous mRNA species. UMIs are added during the capture and

reverse transcription steps to uniquely label transcripts.

(B) Model of hypertranscription in scRNA-seq datasets. Absolute scaling preserves large-scale transcriptomic shifts that are typically masked in global scaling

approaches due to assumptions of mRNA content parity between cells of a dataset.

(C) Transcript abundance in singlets and doublets within ground-truth datasets. Transcripts represent raw UMIs.

(D and F) Transcript abundances per pseudocell vs. ground-truth mRNA content under different normalization methods. Each point represents a single artificially

generated pseudocell transcriptome using defined amounts of cell-line mRNA. r values represent Spearman’s coefficient.

(E and G) Transcriptome curves depicting gene expression across top 25,000 genes in pseudocells. Individual genes are ranked using combined log2 expression

between all pseudocell ground-truth conditions.
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1.02-fold change between the two cell states, ERCC normaliza-

tion revealed that serum mESCs contain 2.37-fold higher tran-

script counts than 2i mESCs, in concordance with findings

from bulk CNN RNA-seq data (Figures 2A–2F).9

To confirm whether this increase in total transcript abundance

is reflective of hypertranscription, we turned to evaluating known

hallmarks. We found that under absolute scaling, mESCs display

global transcriptomic upregulation across both highly and lowly

expressed genes (Figures 2G and 2H). These upregulated genes

include chromatin remodelers, DNA repair factors, ribosomal

genes, housekeeping genes, and Myc (Figures S2A and S2B).

Performing Gene Ontology (GO) analysis using differentially ex-

pressed genes in serum vs. 2i mESCs extracted from globally

scaled data revealed an enrichment for terms associated pre-

dominantly with metabolic pathways, mainly highlighting the

metabolic differences between the cell states (Figure 2I). In

contrast, GO analysis starting with absolute scaling revealed a

high enrichment of terms related to translational/ribosomal pro-

cesses and biosynthesis (Figure 2J). These findings are in strong

agreement with our previous bulk-CNN characterizations of hy-

pertranscribing serum vs. 2i mESCs.9

We then looked to validate our absolute scaling methodology

using data from cells in vivo, rather than cultured cells. We have

previously shown that during mouse embryogenesis, the mid-

gestation primordial germ cell (PGC) lineage undergoes Myc-

driven hypertranscription relative to the surrounding soma.3 To

assess whether hypertranscription can also be captured during

this period in scRNA-seq data, we used a 10x Genomics dataset

generated from whole mouse gonads at seven time points be-

tween E11.5 and P5.26 When identified by the expression of

Oct4, globally scaled PGCs appear as having minimal difference

in total transcript counts compared with soma (Figures 2K, 2M,

and 2O). In contrast, an analysis of raw UMIs revealed that

PGC transcript abundances are 1.62- and 2.17-fold increased

over soma at E12.5 and E14.5, respectively (Figures 2L, 2N,

and 2P). These elevations in UMI counts correspond precisely

to the time points of PGCmitotic expansion during development

and are accompanied by increases in G2/M- and S-phase cell-

cycle scores (Figure 2Q).26,27

Similar to serum mESCs, the transcriptomes of E12.5 and

E14.5 PGCs normalized by absolute scaling display a high over-

representation of genes related to hypertranscription hallmarks

(Figures S2C and S2D). Importantly, these differential expression
Figure 2. Detection of embryonic hypertranscription by absolute scali
(A and B) Uniform approximation and projection method (UMAP) visualization o

reduction performed under the indicated scaling type.

(C–F) Total transcript counts in serum/2i mESCs under global/absolute scaling. C

scaling, while counts in (D) and (F) represent total transcripts following ERCC norm

Wilcoxon rank-sum test.

(G and H) Cumulative distribution plots depicting gene expression across top

expression in both conditions. p < 2.2 3 10�16 between serum/2i (Kolmogorov-S

(I and J) Enriched GO terms from R2-fold differentially upregulated genes in ser

(K and L) UMAP visualization of E12.5 gonad scRNA-seq data under global/absolu

reduction performed under the indicated scaling type.

(M–P) Transcript abundance in gonad scRNA-seq data under global/absolute scal

scaling, while counts in (N) and (P) represent raw UMIs. Lines correspond to me

(Q) Cell-cycle scoring of gonad cells. Phase scores were calculated using cell-c

median values and are colored according to cell type.
changes are largely absent prior to and following the burst in

PGC proliferation, in agreement with the restriction of hypertran-

scription to midgestation development.3 Together, these data

indicate that absolute scaling, whether based on UMI or

ERCC-spiked data, accurately reproduces embryonic hyper-

transcription in scRNA-seq data both in culture and in vivo,

prompting us to apply it to complex adult cell datasets.

Transcriptional content heterogeneity across adult cell
lineages
Wepreviouslyhypothesized that the rapidproliferation required for

turnover in select organs systems may be facilitated in part by hy-

pertranscription.2We looked to explore this possibility by applying

the absolute scalingmethodologydescribed above toexisting sin-

gle-cell atlases of mouse organs. Large-scale scRNA-seq studies

have begun to assemble compendia of cellular diversity, which

serve as general resources of organism-wide cell expression pro-

files.28–30Wechose to focuson theTabulaMuris atlas of 20mouse

organs, which was particularly amenable to absolute scaling due

to its inclusion of both ERCC spike-ins and UMIs.31 Within the

atlas, these inclusionsaredividedbetweendatasetsgeneratedus-

ing Smart-seq2 (fluorescence-activated cell sorting [FACS]) and

10x Genomics (Droplet) platforms, respectively. In the following

analysis, we focused primarily on FACS datasets due to the wider

organ selection and greater read depth, as well as the better

performance of ERCC normalization for absolute scaling (see

Figures 1 and S1).14 Where relevant, we corroborated significant

findings using data based on raw UMI counts.

To apply absolute scaling to the Tabula Muris, we first ensured

linear correlations of ERCC expression between organ datasets,

as well as validating that individual ERCC species were present

at expected frequencies (Figure S3). In addition, we performed

filtering for ERCC levels, library size, and doublets for all datasets

(Figure S3H, and see STARmethods).32 These steps resulted in a

total of 42,047 ERCC-containing and 45,568 UMI-containing li-

braries, which upon absolute scaling showed an interquartile

range (IQR) of 1,119,112 transcripts and 6,377 UMIs, respectively

(Figures S3A–S3D). Where available, FACS and Droplet datasets

of the same organ were correlated at the levels of both gene

expression andmedian transcripts per cell (Figures S3J and S3K).

Given the substantial IQR of cellular transcript content in both

FACS and Droplet datasets, we next looked to assess whether

transcript content differed significantly at the level of individual
ng
f serum/2i mESCs under global/absolute scaling. Plots depict dimensionality

ounts in (C) and (E) represent sums of globally scaled transcripts following log2

alization. Lines correspond tomedian values. Statistical test performedwas the

25,000 genes in serum/2i mESCs. Distributions were computed using log2

mirnov test) for both absolute and global scaling.

um mESCs under global or absolute scaling conditions.

te scaling containingOct4+ PGCs andOct4� soma. Plots depict dimensionality

ing. Counts in (M) and (O) represent sums of globally scaled UMIs following log2

dian values and are colored according to cell type.

ycle markers from globally scaled gene expression data. Lines correspond to
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organ systems. Remarkably, we found that the Tabula Muris dis-

plays substantial variation in median transcript counts per organ,

spanning a 6.63-fold difference in FACS data and a 3.78-fold

difference in 10x data (Figures 3A and S4A; Table S1). The distri-

bution of transcript abundances within organs also varies sub-

stantially, with the highest variance in the large intestine (FACS

IQR = 2,454,958) or bladder (10x IQR = 10,987) and lowest vari-

ance in the spleen (Smart-seq2 IQR = 199,384; 10x IQR =

2,174) (Figures 3A, S4A, and S4B; Table S1). Interestingly, we

noticed that datasets derived from the hematopoietic, intestinal,

and integumentary organs—systems classically associated with

continuous turnover33—rank highly among other organs in tran-

script content and are bimodally distributed (see below).

We next looked to visualize the distribution and heterogene-

ity of transcript abundance in the Tabula Muris dataset. As ab-

solute scaling changes the structure of the data compared with

global scaling (Figure S5), we performed dimensionality reduc-

tion under global scaling to maintain the identification of cell

types using standard methods, but overlaid transcript counts

generated under absolute scaling for visualization. We found

that even under these conditions of RNA content parity, the dis-

tribution of transcript counts is heterogeneous and a defining

characteristic of many cell clusters (Figure S4C). In addition,

we observed a widespread presence of transcript abundance

gradients between highly separated groups of cells, suggesting

intermediate states of cellular transcript content. To further

explore these differences, we leveraged cell-type annotations

by the Tabula Muris Consortium, which revealed that transcript

counts between different cell types span a remarkable 15.79-

fold difference in FACS data (over 82 cell types) and an 8.29-

fold difference in 10x data (over 56 cell types) (Figures 3B

and S4B; Table S1).31 Interestingly, we found that a large pro-

portion of the highest transcript-count cells are associated with

an adult stem cell or progenitor cell identity, particularly from

the bone marrow, intestine, and skin datasets. These findings

are supported by the observation of higher levels of uridine

incorporation in intestinal crypts, where stem and progenitor

cells reside (see Jao and Salic34 and below). In contrast, we

found that cell types with the lowest transcript counts are often

associated with more highly differentiated or terminal cell states

(Figures 3B and S4B; Table S1). Some notable exceptions to

this association between elevated transcript counts and

stem/progenitor cell states are discussed below. The accuracy

of these differences was supported by transcript abundances

in T cells, B cells, macrophages, and endothelial cells, which

together display minimal variation while spanning multiple or-

gan datasets (Figure S6).
Figure 3. Absolute scaling reveals transcriptional content heterogene

(A and B) Distribution of cellular transcript content between FACS organ data

represent ERCC-normalized reads.

(C–E) Single-cell correlation of transcription signatures with log2 transcript abun

FACS data across the entire atlas. Each point represents a single cell, with color

(F) Ranking of genes by Spearman coefficient to log2 transcript abundance acros

genes.

(G) Correlation betweenChd1 expression and log2 transcript abundance. Each po

in (A). r values represent Spearman’s coefficient.

(H) Enrichment analysis for GO biological process terms using top 3,000 highly c
Together, these data reveal the extent of inter- and intraorgan

variation with regard to transcript content per cell. As a corollary,

these findings suggest that the application of global-scaling ap-

proaches in complex tissues, while useful for identifying outlier

modules of differential expression, is insufficient to capture

important biological information with regard to transcriptional

output per cell.

Relationship between elevated transcriptional output
and the cell cycle
We next looked to evaluate whether high-content cell types were

possible candidates for hypertranscribing populations. As hy-

pertranscription is thought to facilitate rapid proliferation in em-

bryonic contexts, we assessed the relationship between cell

cycling and transcript abundance.2 Using globally scaled

expression data, we performed cell-cycle staging as previously

described35 and evaluated the proportion of cycling and non-

cycling cells within each annotated cell identity. Surprisingly,

when identities were ranked by the proportion of non-cycling

cells, we observed a wide distribution with regard to total

transcript content (Figure S7). Cell types canonically associ-

ated with rapid turnover, including progenitor cells of the

bone marrow, skin, and intestines, display high proportions

of G2/M- and S-phase cells alongside elevated transcript

counts. In contrast, several non-cycling G1 cell types of the liver

and bladder urothelium also display heightened transcript

abundance.

We hypothesized that the properties of these latter cell types

might in part be driven by alternative mechanisms, including so-

matic polyploidy. Polyploidy has been well documented in both

hepatocytes and superficial urothelial cells and arises through

either incomplete cytokinesis or endoreplication.36–41 Although

we lacked DNA content information to directly measure these

processes, we took advantage of previous studies identifying

markers specific for polyploid cell populations. Using the Tabula

Muris FACS liver dataset, we found that cell clusters with

elevated transcript abundance are also enriched in markers of

4n hepatocyte Mixipl, Lifr, and Nr1i342 (Figures S8A–S8D). Simi-

larly, we found that high-transcript cells within the FACS bladder

dataset co-express Krt20 and Upk2 while lacking Trp63, a

combination specific for 4n + 4n superficial cells36 (Figures

S8E–S8O). Thus, these data suggest that estimation of mRNA

abundance using absolute scaling is consistent with expected

differences driven by polyploidy.38

A further exception to the general association between high

transcript content and cycling stem/progenitor cells appears to

be secretory terminally differentiated cells, such as goblet and
ity in the Tabula Muris

sets under absolute scaling, ranked by median total transcripts. Transcripts

dance. Signature scores were determined using VISION with absolute-scaled

scale depicting plotting density. r values represent Spearman’s coefficient.

s the entire FACS atlas. Highlighted genes represent all expressed Rpl and Rps

int is representative of a single averaged cell type, with colors matching organs

orrelated genes (to log2 transcript abundance) under absolute scaling.
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Paneth cells within the intestinal epithelium (see below). We had

previously speculated that the biosynthetic demand of secretory

cells may require features of hypertranscription.2 This possibility

is supported by the present analysis but warrants further inves-

tigation. Taken together, these analyses indicate that elevated

transcriptional counts are generally associated with cycling

stem/progenitor cells across multiple organs, with important ex-

ceptions observed in terminally differentiated cells that may be in

part explained by polyploidy or high secretory output.

Adult cells with high transcript content display
hallmarks of hypertranscription
We next investigated the relationship between transcript content

and hypertranscription using properties previously defined in

bulk RNA-seq studies of embryonic cell populations (see the

introduction and Percharde et al.2). First, we chose a global

approach by evaluating the atlas-wide expression of various

transcriptional signatures representative of relevant biological

processes. At the level of single cells, we found that transcript

abundance is robustly correlated with GO hallmark gene sets

previously associated with hypertranscription, such as chro-

matin organization, RNA polymerase II (Pol II) activity, ribosome

biogenesis, DNA repair, and cell division (Figures 3C–3E and

S9A–S9C). We also found that a signature of embryonic hyper-

transcription generated using the earlier Kolodziejczyk et al.25

dataset is highly correlated with transcript content in adult cells

(Figure 3C). These associations are continuous, indicating that

cells do not endogenously rest at discrete levels of transcription.

Rather, these data suggest that transcriptional output is fine-

tuned across a wide spectrum by euchromatin regulation, RNA

stability, translation, and other related processes.

We next sought to assess whether these hallmarks are re-

flected at the level of the expression of key individual regulators

of hypertranscription. We found that the absolute-scaled

expression of Chd1, transcription factors of the Myc family

(see below), several DSB repair factors, mTOR, and ribosomal

proteins is robustly correlated with single-cell transcript content

(Figures 3F, 3G, and S9D–S9I; Table S1). In addition, performing

enrichment analysis on the set of genes with correlation coeffi-

cients of R0.75 to transcriptional content per cell revealed

strong enrichment for GO terms related to translation, transcrip-

tion, and metabolic processes (Figure 3H; Table S1).

A key hypothesis underlying the mechanistic basis of hyper-

transcription is the activity of universally amplifying transcription

factors, which bind and regulate large portions of the transcrip-

tome. Experimental evidence for both Myc- and Yap-driven hy-

pertranscription has been reported in embryonic contexts.3,7,8

To explore whether the role of these transcription factors is re-

tained in adult cells, we first used chromatin immunoprecipita-

tion (ChIP) enrichment analysis (ChEA) on the Tabula Muris using

genes with a R0.75 Spearman’s coefficient to transcript abun-

dance. ChEA performs gene-set enrichment using protein-DNA

interactions derived from ChIP-sequencing and DamID

studies.43 Interestingly, we found that genes with strong correla-

tions to transcript content are highly enriched in Myc and N-Myc

ChEA interactions across several biological contexts (FigureS9J;

Table S1). In contrast, correlated genes display weaker enrich-

ment in Yap interactions (Table S1). These differences are re-
8 Cell Reports 42, 111978, January 31, 2023
flected in the overall higher correlation of per-cell transcript con-

tent with Myc over Yap (Figures S9G–S9I). Thus, the Myc family

of transcription factors, more so than Yap, is strongly associated

with hypertranscription in adult stem/progenitor cells. This anal-

ysis further reveals other transcription factors that have not to

date been studied in the context of hypertranscription and

display chromatin binding patterns strongly linked to transcript

content in adult stem/progenitor cells (Figure S9J; Table S1).

These transcription factors, such as Eklf, E2f1, and Zfx, deserve

to be revisited for potential roles in hypertranscription.

Taken together, these data demonstrate a strong congruity of

hypertranscription hallmarks between established embryonic

models and stem/progenitor cells of adult tissues.3–5,7–10,25

These similarities indicate that adult cycling stem/progenitor

cells redeploy an embryonic hypertranscriptional program to

meet the biosynthetic demands of organ renewal.

Hypertranscription is detected in activated progenitor
cells with multilineage potential in adult organs
The presence of hypertranscription hallmarks within adult multi-

potent stem/progenitor cells led us next to probe the association

between transcript content and lineage progression. We first

asked whether cellular transcript counts are correlated with

any previously established methods of inferring differentiation

trajectories in scRNA-seq data. Differentiation progression has

been captured using feature counts (number of expressed

genes) or quantile polarization scores of principal components

of the data (possibly reflecting polarized biological activity),

providing the framework for the CytoTRACE and VECTOR tra-

jectory inference tools, respectively.44,45 Across individual cells

of each organ dataset, we found that transcript levels, but not

the variance in these levels, are well correlated with bothmetrics,

displaying particularly strong associations with feature counts

(Figures S10 and S11). It should be noted, however, that while

CytoTRACE and VECTOR focus on defining hierarchies of

differentiation, the purpose of absolute scaling is to detect global

transcriptomic shifts that occur in hypertranscribing cells.

Nonetheless, these data suggest that transcriptional output,

alongside transcript diversity, decreases along differentiation

trajectories concomitant with a loss of multipotent capacity.

To explore this concept in the context of a well-defined differ-

entiation model, we focused specifically on hematopoiesis

within the bone marrow, the progression of which has been

extensively characterized.46 We found that ranking cell types

within the Tabula FACS bone marrow dataset by absolute tran-

script abundance approximates the known hematopoietic hier-

archy from multipotent stem cells to terminal differentiated

mononuclear cell types (Figures 4A–4C). Importantly, hemato-

poietic multipotent stem/progenitor cells display the previously

explored hallmarks of hypertranscription, including upregulation

of chromatin remodelers, DNA repair factors, ribosomal genes,

and housekeeping genes (Figure 4D), as well as a substantial

enrichment of the embryonic stem cell serum hypertranscription

signature (Figure 4E). Moreover, we found that hematopoietic

multipotent stem/progenitor cells display higher levels of both

steady-state and nascent (intronic) reads, in agreement with

the notion that hypertranscription is primarily regulated at the

level of nascent transcription2 (Figure 4F).
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Cell Reports 42, 111978, January 31, 2023 9

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
We independently validated these observations in the

hematopoietic system by generating an original dataset of sin-

gle-cell transcriptomes from whole bonemarrow on the 10x Ge-

nomics platform. After standard filtering, we obtained deeply

sequenced transcriptome datasets from 2,454 cells with a

mean of 143,767 reads and 19,640 UMIs per cell. Unsupervised

clustering and expression-basedmarker annotation revealed 17

cell types, covering both mature and progenitor populations of

the lymphoid/myeloid lineages (Figure S12A). Consistent with

bone marrow data in the Tabula Muris FACS and 10x datasets,

we identified enrichment of transcript content in multipotent

progenitor populations compared with terminally differentiated

cell types, as well as corresponding upregulation of hallmarks

of hypertranscription (Figures S12B–S12F). Of note, our findings

in the scRNA-seq datasets from both Tabula Muris and our lab

(Figure S12) are further orthogonally validated by previous mea-

surements of total RNA levels and spike-in normalized RNA-seq

in bulk hematopoietic populations.47,48 Thus, these data sup-

port the utility of absolute scaling of scRNA-seq data for uncov-

ering hypertranscription within complex tissues.

Consistent with the model that hypertranscription acts in adult

progenitors to facilitate renewal, we identified concordant results

in stem cells of the skin and adult large intestine. In the interfollic-

ular epidermis, Top2a+ cycling basal stem cells contain elevated

transcript abundance compared with superficial epidermal cells

(Figure 5).31 In the intestine, multipotent Lgr5+ stem cells in crypt

base display elevated steady-state and nascent transcripts

compared with the more terminally differentiated enterocyte

and brush cell populations (Figures S13A–S13E). These stem

cells, which rapidly replenish the colonic epithelium during ho-

meostatic turnover, widely display the previously explored hall-

marks of hypertranscription (Figures S13F–S13H).49 Independent

support for our findings is provided by Jao and Salic, who re-

ported that intestinal crypts, where stem/progenitor cells reside,

have high levels of incorporation of 5-ethynyl uridine (EU), a

marker of nascent transcription.34

Interestingly, we also observed a substantial enrichment of

transcripts in goblet cells, which are required for continuous

mucin production (Figure S13D). To explore the hypertranscrip-

tional status in other secretory cell populations, we turned to

examining the gastric pits of the mouse corpus and pylorus.50

In addition to identifying high transcript content within actively

cyclingMki67+ isthmus stem cells, we also observed that several

slow-dividing secretory cell populations, such as acid-secreting

parietal cells and zymogen-secreting chief cells, also display

elevated transcript content (Figure S14). Importantly, cells of

the gastric epithelium have not been reported to contain high
Figure 4. Hematopoietic progenitors display hallmarks of hypertransc

(A) UMAP visualization of cell types within the bone marrow dataset using dimen

(B) Distribution of cellular transcript content between cell types of the bone marr

(C) Transcriptome curves depicting gene expression across top 20,000 genes in r

combined log2 expression between all cell types. Indicated cell types correspon

(D) Expression of select genes relevant to hallmarks of hypertranscription, includ

housekeeping genes, and (5) hematopoietic markers.

(E) UMAP visualization of signature scores generated by VISION using absolute-

(F) UMAP visualization of total spliced/unspliced transcripts andChd1 expression

detection of intronic sequences.
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levels of polyploidy, unlike in other exocrine organs such as the

liver or pancreas.39,51 The presence of high transcript counts in

these populations adds further support to a possible role for hy-

pertranscription in driving secretory cell output and is deserving

of further investigation.

Dynamic modulation of hypertranscription during adult
cell differentiation
We next looked to characterize dynamic changes in hypertran-

scription through the course of differentiation. We performed

pseudotemporal ordering usingMonocle on isolated hematopoi-

etic cell trajectories representing the differentiation pathways of

granulocytes, erythroblasts, and monocytes.52 In granulocytes,

we found that transcript abundance follows a gradual decrease

throughout differentiation toward terminal identities (Figures 6A–

6C). To further probe transcriptional dynamics during this differ-

entiation path, we used k-means clustering to organize differen-

tially expressed genes into six groups (Figures 6D–6I). Despite

some overlap, these groups are enriched in unique biological

processes, such as translational components in group 1 and

cell-cycle genes in group 5. Remarkably, we found that only

group 1 genes are downregulated substantially faster than the

average total downregulation of transcriptional output over

pseudotime, while all other groups track with the average or

lag behind (colored lines in Figures 6D–6I). These results suggest

that in the context of differentiation, the exit from hypertrans-

cription may be primarily initiated via the downregulation of

ribosome biogenesis and translational output. The preferential

protein instability of euchromatin and transcriptional activators

that we have previously reported in embryonic stem cells may

similarly, in adult cells, make hypertranscription dependent on

high translational capacity.10

In the erythroblast and monocyte trajectories, we observed

similar results with progressive losses of total transcript content

with pseudotime (Figure S15). In addition to this overall decline,

we detected small populations of intermediate cells with tran-

sient increases in transcript content, reflected most strikingly in

the levels of ribosomal and housekeeping genes (Figures S15J

and S15K). Interestingly, these brief bursts of increased tran-

scription coincide with the onset of key differentiation effector

genes that rapidly rise to very high levels, such as the induction

of b-2 hemoglobin in developing erythroblasts (Figure S15N). It is

possible that these transient rises in transcriptional output sup-

port high levels of synthesis needed for the rapid production of

differentiation effector proteins. Importantly, while global scaling

would correctly identify the onset of these differentiation

markers, it would entirely miss the remarkable dynamics of
ription

sionality reduction performed under absolute scaling.

ow FACS dataset. Transcript counts represent log2 ERCC-normalized reads.

epresentative cell types of the bone marrow. Individual genes are ranked using

d to the highlighted curve.

ing (1) chromatin remodelers, (2) DNA repair factors, (3) ribosomal genes, (4)

scaled expression data.

under absolute scaling. Unspliced or nascent transcripts were assigned by the



Figure 5. Epidermal progenitors display hallmarks of hypertranscription

(A) UMAP visualization of cell types within the skin FACS dataset.

(B) Visualization of cycling Top2a+ epidermal stem cells within the dataset. Plots in (A) and (B) depict dimensionality reduction performed under absolute scaling.

(C) Transcript content differences between Top2a+ and Top2a� cells.

(D) Distribution of cellular transcript content between cell types of the epidermis, ranked by median content. Transcript counts represent log2 ERCC-normalized

reads.

(E) Transcriptome curves depicting gene expression across top 20,000 genes in representative cell types of the epidermis. Individual genes are ranked using

combined log2 expression between all cell types. Indicated cell types correspond to the highlighted curve.

(F) Expression of select genes relevant to hallmarks of hypertranscription, including (1) chromatin remodelers, (2) DNA repair factors, (3) ribosomal genes, (4)

housekeeping genes, and (5) epidermal compartment markers.

(G) UMAP visualization of total spliced/unspliced transcripts and Chd1 and Myc expression under absolute scaling.

(H) UMAP visualization of signature scores generated by VISION using absolute scaling.
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Figure 6. Hypertranscription marks developmental progress in hematopoiesis

(A and B) UMAP visualization of Monocle pseudotime scores and total transcript abundance under absolute scaling. Cd34+/cKit+ hematopoietic stem cells were

defined as root cells for trajectory inference analysis.

(C) Heatmap depicting transcriptomic expression changes across differentiation pseudotime from hematopoietic stem cell to granulocyte. Rows depict individual

genes and columns depict single-cell transcriptomes ordered by pseudotime values. Group annotations represent k-means clusters generated under absolute

scaling, with expression presented as Z scores.

(D–I) Transcriptome curves representing expression of clustered genes across progression of pseudotime. Dotted line represents average expression of all genes

(as depicted in [C]). Right side of each column shows enriched GO terms derived from genes within each group. Expression in (C)–(I) represents ranged log2

expression of ERCC-normalized reads.
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global transcription during lineage commitment, including large-

scale shifts in the levels of the transcription and translation ma-

chineries (Figure S15O). Taken together, our analyses uncover

a remarkably rich level of dynamics in global transcription at

the single-cell level and point to a pervasive redeployment of hy-

pertranscription beyond embryogenesis in adult stem/progeni-

tor cells.

Rapid induction of hypertranscription during adult organ
regeneration
The observation that hypertranscription is dynamically regulated

during physiological renewal of adult organs led us to explore its

status during regeneration. We first focused on the context of

skeletal muscle repair, which is mediated by the rapid prolifera-

tion and differentiation of resident muscle satellite stem cells.53

This context was of particular interest as steady-state satellite

stem cells display relatively low transcript abundance in the Tab-

ulaMuris (see Figure 3 and Table S1). Remarkably, we found that

the total transcript content of satellite stem cells ranks highest

compared with other cell types across a dataset of cardio-

toxin-induced tibialis muscle injury54 (Figures 7A–7C). When

stratified into specific days post-injury (DPI), we found that unin-

jured and 21DPI satellite stem cells display comparably low tran-

script content (Figure 7D). In contrast, 0.5 DPI satellite stem cells

display a notable 3.5-fold upregulation of transcriptional output,

which peaks at 2 DPI and slowly returns to baseline over the next

19 days. This rapid elevation of transcription upon injury pre-

cedes a large increase in the numbers of satellite stem cells,

which rise by nearly two orders of magnitude across a 3 day

period (Figure 7D). In agreement with our data on hypertranscrib-

ing hematopoietic and epithelial stem/progenitor cells, we found

that the genes most differentially expressed in 0.5 DPI vs. unin-

jured satellite stem cells are enriched for functions in ribosome

biogenesis, translation regulation, and RNA processing (Fig-

ure 7E). Together, these data indicate that muscle satellite

stem cells enter a state of injury-induced hypertranscription

that precedes rapid expansion and subsequent regeneration.

In a separate model of organ damage, we explored the recov-

ery of the intestinal epithelium after irradiation. Canonical intesti-

nal stem cells, marked by Lgr5 expression, reside at the base of

intestinal crypts and renew the epithelium during normal homeo-

stasis.55 However, recent work has demonstrated that a rare,

separate type of cell, named revival stem cell and marked by

Clu expression, is responsible for regeneration in response to

irradiation.56 Consistent with our analysis in the Tabula Muris

(see Figures 3 and S13), Lgr5+ intestinal stem cells display the

highest transcript content among all cell types in the crypt

compartment (Figures 7F–7H). Interestingly, upon irradiation-

induced loss of Lgr5+ intestinal stem cells, Clu+ revival stem cells

assume comparably high levels of transcript content, as well as

both cycling and non-cycling compartments, as previously

noted (Figure 7H).56 These findings suggest that, as Clu+ revival

stem cells exit quiescence to replenish the crypt niche, they

enter hypertranscription to support the biosynthetic require-

ments of regenerative proliferation and differentiation. Thus,

our results indicate that hypertranscription is redeployed in adult

stem/progenitor cells both during physiological organ renewal

and in different contexts of regeneration upon injury.
DISCUSSION

We report here the development and validation of absolute-

scaling approaches to estimate transcript abundance in

scRNA-seq data. When applied to a variety of scRNA-seq data-

sets, absolute scaling accurately captures known cases of hy-

pertranscription in embryonic cells and uncovers a rich level of

global transcriptional dynamics in adult tissues. Our analyses

indicate that hypertranscription is pervasively redeployed by

stem/progenitor compartments across adult organ systems un-

der both homeostatic and regenerative conditions. Thus, rather

than being largely ignored, as it is by standard scRNA-seq anal-

ysis methods, we propose that hypertranscription is central to

the biology of adult organs and needs to be considered in order

to understand the mechanisms that underlie their maintenance

and regeneration.

Our results document that absolute scaling is capable of

capturing large-scale changes in transcriptional output in

scRNA-seq data, as long as ERCC exogenous spike-ins or

UMI barcodes are used. While both methods remain useful,

our data slightly favor the use of ERCCs over UMIs in this

context, likely because they are introduced farther upstream in

sample processing. Our ground-truth tests and reproduction of

embryonic hypertranscription results strongly validate the ability

of absolute scaling to detect global changes in transcriptional

output. Moreover, our insights on hypertranscription in adult he-

matopoietic progenitors are validated by an independently

generated whole bone marrow dataset that displays strong con-

sistency with both platforms of the Tabula Muris (10x and Smart-

seq) and are further supported by data in bulk populations47,48

(Figure S12; Table S1). Taken together, our results demonstrate

that, despite its relatively simple methodology, absolute scaling

analysis is highly informative for the study of hypertranscription

and its associated features.

Our results highlight the notion that global variations in total

cellular mRNA content represent a widely relevant but under-

appreciated biological dimension, expanding the role of hy-

pertranscription beyond select examples in development

and tumorigenesis. This notion is also supported by early

studies dating back to the 1930s, reporting evidence of

elevated total RNA content within progenitor cells of the he-

matopoietic and intestinal systems.34,57,58 Our work builds

upon these studies by comprehensively exploring transcrip-

tional heterogeneity and dynamics at the single-cell and tran-

scriptome-wide levels. In the process, our analyses uncovered

putative molecular drivers of hypertranscription in diverse

contexts of adult organ homeostasis. We note that global

scaling and absolute scaling are not mutually exclusive and

can be applied to the same dataset, maximizing the informa-

tion that is extracted from each experiment. Thus, absolute

scaling provides a dimension with which to refine biologically

heterogeneous cell populations that may otherwise express

similar markers. The capacity to explore hypertranscription

in single-cell data will enrich our understanding of many bio-

logical questions, notably in adult organ maintenance, regen-

eration, pathology, and malignancy.

We identify hypertranscription as a feature of active stem/pro-

genitor cells that decays along lineage commitment. We note
Cell Reports 42, 111978, January 31, 2023 13



Figure 7. Hypertranscription is deployed during regenerative processes

(A) UMAP visualization of all cells in the muscle repair atlas. Highlighted cells represent annotated satellite cells across all time points. Plot depicts dimensionality

reduction performed under absolute scaling.

(B) UMAP visualization of muscle satellite cells. Plot depicts dimensionality reduction performed under absolute scaling.

(C) Distribution of transcript content between cell types across all time points. Lines correspond to median values.

(D) Progression of satellite cell transcript content and cell number through injury and regeneration. Transcript counts represent raw UMIs, error bars represent

standard deviation.

(E) GO terms enriched in >1.5-fold differentially upregulated genes in 0.5 DPI vs. uninjured satellite cells.

(F and G) UMAP visualization of transcript abundance, stem cell marker Lgr5, and revival stem cell marker Clu across all cells in normal/irradiated crypts. Plots

depict dimensionality reduction performed under absolute scaling.

(H) Distribution of transcript abundance and cell-phase scores between cell types in normal and irradiated crypts. Cell types are ranked bymedian log2 UMIs with

lines corresponding to median values.
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that the transcriptome is not linearly amplified or repressed, but

follows patterns such as the primacy of modulating regulators of

ribogenesis and translation that are not fully understood and

deserve further investigation.9,10 Moreover, transcript content

does not decline strictly linearly down differentiation pathways

but rather includes transient fluctuations, possibly due to high

synthesis of differentiation effector proteins or expansion of

transit amplifying-like cells (see Figure S15). Dissection of these

transcriptional dynamics is likely to further reveal aspects of the

biology of stem cell compartments. The existence of high-tran-

script-content cells occupying adult stem cell and progenitor

niches greatly expands the prevalence of hypertranscription

beyond development and tumorigenesis.2,13 Our initial analyses

reveal many similarities between adult hypertranscription and its

embryonic counterpart, but there are likely to be adult-specific

and/or organ-specific aspects of the regulation of hypertran-

scription. It will be of interest to identify the primary drivers of

the onset of and exit from hypertranscription in different organs,

decipher the chromatin dynamics that underlie these changes,

and dissect how they integrate with signaling from the stem/pro-

genitor cell niche, both during physiological organ homeostasis

and during regeneration after injury. Our work lays a foundation

for the investigation of hypertranscription in adult organs at the

single-cell level.

Early histochemical studies dating back to the 1950s reported

evidence of elevated total RNA and protein content within renew-

ing cells of planarians and salamanders, but these findings have

essentially been forgotten in the genomics era.59,60 Our results

put a focus on hypertranscription and its molecular hallmarks

that can now be applied to a plethora of regeneration paradigms

being exploredwith scRNA-seq approaches, such as axolotl limb

or mouse digit tip regeneration.61–64 Of note, it has recently been

shown that, during the conversion of fibroblasts to motor neu-

rons, a combination of high proliferative capacity with hypertran-

scription identifies cells with the greatest probability of faithfully

reprogramming.65We anticipate that further exploration of hyper-

transcription in the context of regeneration and cellular reprog-

ramming paradigms will provide fundamental molecular insights

that may have a broad impact in regenerative medicine.

Limitations of the study
Despite considerable validation of the absolute scaling method-

ology, several potential sources of technical variation remain.

ERCC-based protocols are dependent on proper experimental

aliquoting, andwhether various technical and sequencing biases

equally affect endogenous and extrinsic sequences remains

debated.14 The accuracy of UMIs, in addition to the aforemen-

tioned issues, can also be affected by fluctuations in sequencing

depth.14 As with all scRNA-seq studies, the use of higher cell

numbers and greater read depths per cell attenuate sources of

potential artifactual noise. We anticipate that these limitations

will be aided by the development of improved single-cell proto-

cols that more quantitatively capture the composition of total

cellular RNA, including ribosomal and non-coding RNA species.

We report hypertranscription to be frequently deployed in acti-

vated stem/progenitor cell compartments. However, it is clear

that hypertranscription is not a feature that can on its own be

used to accurately identify stem/progenitor cells. Several excep-
tions are noted in our analyses, such as quiescent vs. activated

muscle satellite stem cells (Figure 7). Another example is that of

B and T cells, which enter hypertranscription when activated

while maintaining their terminally differentiated cellular identity.

Other methods, such as CytoTRACE and VECTOR, are better

suited to identifying multipotency and cellular hierarchies.44,45

The identification of hypertranscription as reported here may

act best as a complementary approach to such methods,

providing orthogonal insights into biosynthetic demand and tran-

scriptional dynamics during differentiation.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mouse embryonic stem cell dataset Kolodziejczyk et al.25 ArrayExpress: E-MTAB-2600

Single-cell mixology dataset Tian et al.23 GEO: GSE118767

Demuxlet human PBMC dataset Kang et al.21 GEO: GSE96583

Cash Hashing human PBMC dataset Stoeckius et al.20 GEO: GSE108313

Mouse skeletal muscle regeneration dataset Oprescu et al.54 GEO: GSE138826

Mouse gonad/ovary dataset Niu et al.26 GEO: GSE136441

Mouse atlas (Tabula Muris) dataset Schaum et al.31 GEO: GSE109774

Mouse intestine regeneration dataset Ayyaz et al.56 GEO: GSE123516

Mouse stomach dataset Busslinger et al.50 GEO: GSE157694

12K 1:1 HEK293T-NIH3T3 mixture dataset 10x Genomics Chromium v2 Chemistry Demonstration

Mouse supplementary adult bone marrow dataset This study GEO: GSE221184

Code for all figures and scRNA-seq analysis This study Zenodo: https://doi.org/10.5281/zenodo.7408025

Experimental models: Organisms/strains

C57Bl/6-Vav-Cre+/-;Chd1fl/+ Koh et al.5 N/A

Software and algorithms

Seurat v4 Stuart et al.66 https://satijalab.org/seurat/

Scran v1.9 Lun et al.67 https://doi.org/10.18129/B9.bioc.scran

VISION v2.1.0 DeTomaso et al.68 https://github.com/YosefLab/VISION

Velocyto v0.16.7 La Manno et al.69 https://github.com/theislab/scvelo

scPipe v3.12 Tian et al.70 https://github.com/LuyiTian/scPipe

DoubletFinder v3 McGinnis et al.32 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

VECTOR v0.0.3 Zhang et al.44 https://github.com/jumphone/Vector

Monocle 3 Cao et al.52 http://cole-trapnell-lab.github.io/monocle-release/

Cellranger v6.1.1 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/

installation

Demultiplex v1.0.2 McGinnis et al.71 https://github.com/chris-mcginnis-ucsf/

MULTI-seq

Enrichr v3.1 Kuleshov et al.72 https://maayanlab.cloud/Enrichr/
RESOURCE AVAILABILITY

Lead contact
Requests for further information, resources, and reagents should be directed to and will be fulfilled by the lead contact, Miguel

Ramalho-Santos (mrsantos@lunenfeld.ca).

Materials availability
This study did not generate new, unique materials.

Data and code availability
d Single-cell RNA-seq data have been deposited at GEO and are publicly available as of the date of publication. Accession

numbers are listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Vav-Cre+/-;Chd1fl/+ mice in a C57Bl/6 background, a phenotypically normal strain, were generated in previously published work.5

As part of a separate study, mice were fed a tamoxifen-supplemented diet (TD.130860, Envigo) for 9 days, followed by 5 days of

standard mouse diet. All procedures involving animals were performed according to the Animals for Research Act of Ontario and

the Guidelines of the Canadian Council on Animal Care. The Animal Care Committee of The Center for Phenogenomics, Toronto,

reviewed and approved all procedures conducted on animals (Protocol 26-0331). Animals were randomly selected from available

mice bred in our facility. Experiments in this study used female animals 6-16 weeks of age in good health.

METHODS DETAILS

Pre-processing of scRNA-seq data
Published count matrices with collapsed UMIs or mapped ERCC sequences were used where available. For CEL/Sort-seq data from

Tian et al 2019, count matrices were generated using the scPipe pipeline using genomic references containing ERCC sequence

data.70 Spliced/unspliced count matrices for the bone marrow, intestine, and skin FACS datasets were generated using the scVelo

pipeline for analysis of nascent reads.73

Seurat objects were used for processing of all scRNA-seq data. Low-quality cells in individual organ datasets were filtered bymito-

chondrial gene expression, ERCC fraction, and gene/transcript counts. To address the possibility that high-content cells were the

result of libraries generated from doublets, we performed heterotypic doublet removal on Smartseq2 and 10x Genomics datasets

using DoubletFinder.32 The total doublet rate was estimated at 4%, and the homotypic doublet rate was derived from Tabula Muris

cell-type annotations. All doublet removal was performed on globally-scaled data with standard processing.

Scaling and dimensional reduction
Absolute scaling analysis of ERCC datasets was performed using the scran package.67 To ensure that transcript counts between

organs were comparable, individual organ count matrices were merged and per-cell size factors were generated from spike-in

data using the computeSpikeFactors function. This calculation is derived from the sum of all spike-in reads and generates a set

of size factors with a mean of unity. Single-cell libraries were then normalized to size factors and log2 scaled. For absolute scaling

analysis of UMI datasets, raw UMI counts were used following log2 scaling. Global scaling was performed on ERCC and UMI data-

sets by first removing spike-in data (if present) and normalizing for library size using the relative counts methods in Seurat’s

NormalizeData function. Results were subsequently log2 scaled and used for analysis.

Standard dimensional reduction was performed using Seurat functions with detailed parameters available in code. Briefly, highly

variable features were scaled and used for principal component analysis, with the number of components determined using resam-

pling tests.74 Data was subsequently visualized using the Uniform Approximation and Projection Method (UMAP).

Cell cycle scoring and signature analysis
To determine cell phase, we used the CellCycleScoring method from Seurat with markers as previously published.35 Briefly, individ-

ual cells were scored based on the expression of either G2/M or S phase cell markers. Cells lacking expression of either marker set

were identified to be in a non-cycling G1 phase. For signature analysis, we used the VISION tool to calculate signature scores using

gene sets derived from the Molecular Signatures Database.68,75 Signatures were calculated using absolute-scaled data without in-

ternal transformation within VISION. For the ‘‘Serum Hypertranscription’’ signature, >2.5-fold differentially upregulated genes in

serum mESCs (Kolodziejczyk et al 2015) were used to generate the gene set.

Quantile polarization scores and pseudotemporal ordering
Quantile polarization scores were calculated with VECTOR using the vector.getValue function. As previously described, we deter-

mined quantile polarization values on absolute-scaled data using the top 150 principal components.44 For pseudotemporal

analysis with Monocle 3, we converted pre-processed and absolute-scaled Seurat objects into Monocle3 cds objects. Cells

were clustered on previously generated UMAP reductions using the Leiden algorithm. To construct single-cell trajectories, he-

matopoietic progenitors expressing Cd34 and Kit were used as root cells. Principal graphs were constructed and used for pseu-

dotemporal ordering.

Bone marrow sample preparation
Femur and tibiae were collected from 2 mice and flushed with 5mL of cold complete media (RPMI +Glutamax, 10% fetal bovine

serum (FBS), 1% PenStrep) per mouse. Bone marrow was subsequently passed through a 70mm cell strainer, and collected cells

were washed in 25mL of complete media and centrifuged at 600g for 4 minutes at 4�C. Red blood cell lysis was then performed

in 3mL of ACK Lysis Buffer (A1049201, Gibco) for 3-5 minutes at room temperature. Cells were washed with 25mL complete media

and cryopreserved at -80�C in freezing medium containing 15% DMSO, 20% FBS and 65% complete media at a final concentration

of 1.0 x 107 cells/mL.
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Sample multiplexing for scRNA-seq
Multiplexing was performed according to theMULTI-seq protocol.71 Individual samples were thawed and both viability and cell num-

ber were assessed using trypan blue exclusion. 2 x 105 cells from each sample were pelleted in microcentrifuge tubes at 400g for

5 minutes. Cells were resuspended in 200uL of a 200nM lipid-modified anchor (kindly provided by Dr. Zev Gartner from University of

California, San Francisco) and 200nM barcode solution in PBS. A unique 8nt barcode harboring a synthetic polyA tail was added to

each sample to facilitate computational demultiplexing. Sample were incubated at room temperature (RT) for 10 minutes, mixed by

pipetting approximately every 2.5-3 minutes to ensure homogeneous labelling. After 10 minutes, samples were supplemented

with 20uL of a 20nM co-anchor solution to stabilize membrane residency of the barcode. Samples were incubated for an additional

5 minutes on ice, mixed by pipetting half-way through the incubation. The samples were then centrifuged at 400g for 5 minutes. The

supernatant was removed, and the cell pellet was then resuspended in 500uL of fresh PBS+ 1%BSA. The cells were then centrifuged

again at 400g for 5minutes. The supernatant was removed, and the cells were resuspended in 50uL of PBS + 1%BSA. Samples were

then pooled together at a 1:1 ratio before assessing cell viability and concentration by trypan blue exclusion.

scRNA-seq library preparation
The pooled samples were diluted to a concentration of 1000 cells/uL. The single-cell suspension was processed using three reac-

tions from the 10x Genomics Single Cell 3’ v3 RNA-seq kit targeting a yield of 15,000 cells per reaction. Gene expression libraries

were prepared according to the manufacturer’s protocol. As per the MULTI-seq protocol, sample barcode libraries were isolated

by collecting the supernatant during the first size exclusion step during cDNA library preparation.71 A ubiquitous sequence in

each sample barcode was used as a PCR handle, allowing for amplification of the barcode libraries. Final libraries were sequenced

on a NovaSeq6000 S1 flow cell (Illumina) to achieve an average depth of >100,000 reads/cell.

Processing of raw sequencing reads and sample demultiplexing
Fastq files for both gene expression and barcode libraries from each reaction were generated using the mkfastq function in cell-

ranger. A gene-by-cell transcript quantification matrix was produced for each of the gene expression libraries using cellranger count

using default parameters. Using the R package deMULTIplex, valid cell barcodes called from the quantification were used to query

the fastq files associated with the barcode libraries, quantifying the occurrence of each barcode. Each cell was then assigned to a

given sample based on its positivity for specific barcodes. Cells with negative signal or positive signal for more than a single barcode

were labelled as ‘‘Negative’’ or ‘‘Multiplet’’ and removed from all subsequent analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis was performed using functions implemented in R. Spearman correlation was used to identify signatures related

to cellular transcript abundance and was calculated using cor. Transcriptome curves were drawn using geom smooth in ggplot2 us-

ing a ‘‘loess’’ model. Cumulative distributions plots for mESC transcriptomes were generated using ecdf, and statistical analyses

were conducted with ks.test, wilcox.test, and pairwise.wilcox.test functions. For differential gene expression in scRNA-seq data,

we used the FindMarkers functions with Seurat and performed gene ontology and ChEA enrichment analysis in Enrichr.76
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  Figure S1 



Supplementary Figure 1: Absolute Scaling Pipeline and Validation for Single-Cell 
Datasets. Supplemental to Figure 1. 
(A) Summary of bioinformatic tools used for absolute scaling in this study.  
(B) Dot plots depicting expression of ribosomal/housekeeping genes under absolute 
scaling in PBMC ground truth datasets. Expression represents z-scores of log2-scaled 
raw UMIs. 
(C) Average expression of RPL and RPS gene expression in Cell Hashing PBMC 
dataset.  
(D) Average expression of RPL and RPS gene expression in Demuxlet PBMC dataset. 
Statistical test performed is the Wilcoxon rank sum test. 
(E, F) Comparison of UMI vs ERCC absolute scaling. Ranged expression represents 
log2 raw UMIs or ERCC-normalized reads. 
(G) Absolute-scaled transcript abundances per pseudocell vs ground truth mRNA 
content under random sub-sampled conditions. All absolute scaling was performed post 
subsampling. Values above plots represent Spearman coefficients between ground 
truth and absolute-scaled expression values. Comparable results obtained for CEL-seq 
mixology system (data not shown). 
 
  



 
  

  Figure S2 



Supplementary Figure 2: Absolute Scaling Captures Hypertranscription 
Hallmarks in Embryonic Datasets. Supplemental to Figure 2. 
(A-B) Expression of genes relevant to hypertranscription hallmarks in serum/2i mESCs 
under global vs absolute scaling.  
(C-D) Expression of genes relevant to hypertranscription hallmarks in Oct4+ 
PGCs/Oct4- soma under global vs absolute scaling. Expression represents z-scores of 
log2-scaled transcripts. 
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Supplementary Figure 3: Quality Control of Tabula Muris. Supplemental to Figure 
3. 
(A-F) Transcript and feature counts of Tabula Muris FACS or Droplet atlases. 
(G) Linear correlations of ERCC spike-in expression between FACS organ datasets. 
Values represent Pearson coefficients. 
(H) Representation of filtering in FACS datasets for transcript counts and ERCC 
percentage. 
(I) Comparison of actual and expected ERCC species expression based on spike-in mix 
composition. 
(J) Comparison of individual gene expression between FACS and Droplet datasets. 
Each point represents a single shared gene between FACS and Droplet dataset. 
(K) Comparison of average transcript abundance in organ datasets between FACS and 
Droplet atlases. For (J-K), transcripts in FACS represents log2 ERCC-normalized 
expression, while values in Droplet represent log2 absolute UMIs. Correlation values 
represent Pearson coefficients.  
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Supplementary Figure 4: Transcript Content Heterogeneity in Tabula Muris 
Datasets. Supplemental to Figure 3. 
(A-B) Distribution of cellular transcript content between Droplet organ datasets under 
absolute scaling, ranked by median total transcripts. Transcripts represent raw UMIs. 
(C) UMAP representations of FACS organ datasets using dimensionality reduction 
under globally-scaled gene expression. Transcript abundance represents log2 scaled 
ERCC-normalized reads 
 
  



 
  

  Figure S5 



Supplementary Figure 5: Comparison of Structural Changes Between Global and 
Absolute Scaling. Supplemental to Figure 3. 
(A) UMAP representations of FACS Tabula Muris Atlas with dimensionality reduction 
performed under global or absolute scaled gene expression. Transcript abundance 
represents log2 scaled ERCC-normalized reads. 
(B) UMAP representations of 10X Tabula Muris Atlas with dimensionality reduction 
performed under global or absolute scaled gene expression. Transcript abundance 
represents log2 absolute UMIs. 
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Supplementary Figure 6: Shared Cell Types Between Organ Datasets Display 
Similar Transcript Abundances. Supplemental to Figure 3. 
(A-B) Boxplots of transcript content and UMAP visualizations of shared cell types in 
FACS (A) or Droplet (B) datasets. Cell types ranked by median transcript content. 
Values in (A) represent log2 scaled ERCC-normalized reads, while values in (B) 
represent log2 absolute UMIs.  
 
  



 
  

  Figure S7 



Supplementary Figure 7: Cell Cycle Phase Distribution in Across FACS Atlas. 
Supplemental to Figure 3. 
(A) Cell cycle phase proportions across all cell types, sorted by percentage of G2/M and 
S cells. Phase scores were calculated using globally-scaled expression data.  
(B) Transcript abundance across all cell types, sorted by percentage of G2M and S 
cells. Transcripts represent log2 scaled ERCC-normalized reads. Line represents 
moving average across 7 cell types. 
(C) Comparison between aggregate G2M/S score and transcript abundance across all 
cells. Comparable results obtained for cell types within the 10X atlas (data not shown). 
 
  



 
  

  Figure S8 



Supplementary Figure 8: High-Content Cells of the Liver and Bladder Display 
Polyploidy Markers. Supplemental to Figure 3. 
(A-D) UMAP representation showing ERCC-normalized reads and log2 expression of 
liver polyploid cell markers. Plots depict dimensionality reduction performed under 
absolute scaling.  
(E-O) ERCC-normalized transcript abundance and log2 expression of polyploid cell 
markers in bladder cells. Plots depict dimensionality reduction performed under the 
indicated scaling type. Statistical test performed is the pairwise Wilcoxon rank sum test 
with Bonferroni correction. 
 
 
  



 
  

  Figure S9 



Supplementary Figure 9: Hypertranscription Hallmarks are Correlated with 
Transcript Abundance. Supplemental to Figure 3. 
(A-C) Single-cell correlation of transcription signatures with log2 transcript abundance. 
Signature scores were determined using VISION with absolute-scaled FACS data. Each 
point represents a single cell, with color scale depicting plotting density. 
(D-I) Positive and negative correlation of select gene expression with log2 transcript 
abundance. Points are displayed as averages within cell types, with colors matching 
organs in (Fig 2). Correlation values represent Spearman coefficients. 
(J) Enrichment analysis for ChEA sets using top 3000 highly correlated genes (to log2 

transcript abundance). 

 

  



 

  

  Figure S10 



Supplementary Figure 10: Transcript Content is a Correlated to Markers of 
Developmental Progression. Supplemental to Figure 3. 
(A) Comparison of log2 absolute-scaled transcript content with feature counts (number 

of expressed genes).  

(B) Comparison of log2 absolute-scaled transcript content with quantile progression 

scores, calculated using globally-scaled FACS data. Correlation values in (A-B) 

represent Spearman coefficients. 

 

  



 

  

  Figure S11 



Supplementary Figure 11: The Cell-Type Variance of Transcript Content is Not 
Correlated to Markers of Developmental Progression. Supplemental to Figure 3. 
(A) Single-cell correlation of log2 Transcripts with markers of developmental 
progression.  
(B) Single-cell correlation of the coefficient of variation (CV) of transcripts with markers 
of developmental progression. Values in (A-B) were derived from cell-types within 
absolute-scaled FACS data. Points are displayed as averages within cell types, with 
colors matching organs in (Fig 2). Correlation values represent Spearman coefficients. 
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Supplementary Figure 12: Independent Single-Cell Analysis Reveals Hallmarks of 
Hypertranscription in Hematopoietic Progenitors. Supplemental to Figure 4. 
(A) UMAP visualization of cell types within in-house generated 10X adult bone marrow 

dataset using dimensionality reduction performed under global scaling. 

(B) Transcriptome curves depicting gene expression across top 20,000 genes in 

representative cell types of the bone marrow. Individual genes are ranked using 

combined log2 expression between all cell types. Indicated cell types correspond to the 

highlighted curve.  

(C) Distribution of cellular transcript content between cell types of the adult bone 

marrow dataset. Transcript counts represent log2 UMIs.  

(D) Expression of select genes relevant to hallmarks of hypertranscription, including (1) 

chromatin remodelers, (2) DNA repair factors, (3) ribosomal genes, (4) housekeeping 

genes, and (5) hematopoietic markers.   

(E) UMAP visualization of total transcripts and Chd1 expression under absolute scaling. 

(F) UMAP visualization of signature scores generated by VISION using absolute-scaled 

expression data. 

 
  



 
  

  Figure S13 



Supplementary Figure 13: Colonic Epithelium Progenitors Display Hallmarks of 
Hypertranscription. Supplemental to Figure 5. 
(A) UMAP visualization of cell types within the large intestine FACS dataset. 
(B) Visualization of cycling Lgr5+ intestinal stem cells within the dataset. Plots in (A-B) 
depict dimensionality reduction performed under absolute scaling. 
(C) Transcript content between Lgr5+ and Lgr5- cells. 
(D) Distribution of cellular transcript content between cell types of the colonic epithelium. 
Transcript counts represent log2 ERCC-normalized reads.  
(E) Transcriptome curves depicting gene expression across top 20,000 genes in 
representative cell types of the colonic epithelium. Individual genes are ranked using 
combined log2 expression between all cell types. Indicated cell types correspond to the 
highlighted curve. 
(F) Expression of select genes relevant to hallmarks of hypertranscription, including (1) 
chromatin remodelers, (2) DNA repair factors, (3) ribosomal genes, (4) housekeeping 
genes, and (5) crypt cell markers.  
(G) UMAP visualization of total spliced/unspliced transcripts, Chd1 and Myc expression 
under absolute scaling.  
(H) UMAP visualization of signature scores generated by VISION using absolute 
scaling. 
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Supplementary Figure 14: Secretory Cells of the Gastric Pit Display Hallmarks of 
Hypertranscription. Supplemental to Figure 5. 
(A) UMAP visualization of cell types within an adult mouse corpus and pylorus atlas. 
Plots depicts dimensionality reduction performed under absolute scaling. 
(B) Distribution of cellular transcript content between cell types of the gastric pit. 
Transcript counts represent ERCC-normalized reads.  
(C) Expression of select genes relevant to hallmarks of hypertranscription, including (1) 
chromatin remodelers, (2) DNA repair factors, (3) ribosomal genes, (4) housekeeping 
genes, and (5) gastric pit cell markers. 
(D) Transcriptome curves depicting gene expression across top 20,000 genes in 
representative cell types of the gastric pit. Individual genes are ranked using combined 
log2 expression between all cell types. Indicated cell types correspond to the 
highlighted curve. 
(E) UMAP visualization of selected markers under absolute scaling.  
 
  



 
  

  Figure S15 



Supplementary Figure 15: Hypertranscription Marks Developmental Progress 

Through Erythroblast and Monocyte Differentiation. Supplemental to Figure 6. 

(A) UMAP representation of cell types within Tabula Muris 10X bone marrow dataset.  
(B) Transcript abundance (raw UMIs) across all cells of the bone marrow.  

(C-D, I-J) UMAP visualization of Monocle pseudotime scores and total transcript 

abundance under absolute scaling. Hematopoietic stem cells were defined as root cells 

for analysis. Plots in (A-B), (C-D), and (I-J) depict dimensionality reduction performed 

under absolute scaling. 

(E-H, K-N) Gene curves representing absolute-scaled expression of indicated genes 

through progression of pseudotime. Each point represents single cells ordered by 

pseudotime values. 

(O) Gene curves representing globally-scaled expression of indicated genes through 

progression of pseudotime. Each point represents single cells ordered by pseudotime 

values. Expression values in (E, K) represent raw UMIs, values in (F-H, L-N) represent 

log2 raw UMIs.  
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